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Abstract  

Planetary Rings consist of particles of size ranging from micron to a few 

meters. These particles are under a large number of forces: 1. gravity of 

the planet pulling the particles towardthe center, 2. gravity of the moons 

pulling the particles outward and often upward or downward from the plane 

of the ring, 3. self-gravity of the ring which pulls the matter down to the 

plane etc. apart from collisional effects. We write down the equations of 

motion of a particle in a rotating frame as well as on the inertial frame and 

solve these equations both numerically and analytically using perturbative 

methods. We find that there is a considerable shear in the vertical direction 

even within the  ring itself and the dissipation it causes can damp excitations 

due to moons within a couple of hundreds of kilometers, We concentrate 

on the damping property of the vertical bending waves which are excited 

by nearby moons orbiting in inclined orbits and show that for reasonable 

parameters of the ring, the damping of the bending wave due to Titan in 

Saturn's C ring could be explained. Our procedure is general and could 

be applicable to all the planetary rings. For micron sized particles Lorentz 

force should also be included since this force becomes comparable to other 

force components. 

In this thesis, the Chapter 1 describes an introduction to the subject 

of planetary ring, narrating the types of rings observed in astrophysics, 

the chronological description of planetary ring study and the motivation of 

choosing the subject. 

The Chapter 2 describes the origin of planetary ring systems using two 

most popular models accepted by the scientists and some basic principles 

like the Roche limit and the coagulation of particles. It also describes 

some basic features ringed planets including their information on rings and 

satellites. Lastly a comparative study is given. 

The Chapter 3 describes the resonance and the spiral waves observed in 

the planetary rings. Since the planetary ring has a close resemblance with 

the galactic disk, a brief comparative analysis is discussed. Basic physics 

behind the resonance is given. Spiral waves are of two types like density 

waves and spiral bending waves. A brief mathematical description of den- 

sity wave is given. Later spiral bending wave is discussed. Since our work 

is on the bending wave, the description of bending wave is discussed in two 

categories. At first the bending wave'is studied using the particle dynamics 
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and the locus of a particle in the warped ring is measured with reference to 

the coordinate system attached to the midplane of the warped ring. Then 

the shear developed is .measured. Here particle collision is not considered. 

However, the shear observed in this study is due to the choice of the coor- 

dinate reference frame in the midplane of the warped ring. The damping 

length of the bending wave matches to some extent on the observational 

data. However, some discrepan~;~es are observed where the source of error 

creeps in due to insufficient data obtained on the surface mass density, wave 

amplitude etc. Next, the fluid dynamics is used assuming the disk having 

thickness as infinitesimally small and a dispersion relation is obtained. 

The Chapter 4 describes the study of Titan -1:0 resonance using our 

numerical modeling using FORTRAN codes and then comparing data with 

the analytical studies. Titan -1:0 resonance is considered as our object of 

study as it is the the only known one-armed bending wave that  propa- 

gates outwards, away from the Saturn, and yet observed in which the wave 

pattern rotates opposite to the orbital direction of the ring particles. The 

analytical studies are done in two ways, with and without binning. Binning 

in the phase-space indicates the population o f  particles visited a particular 

bin. Since one may study N-particle simulation to get a realistic picture of 

the ring, one has to solve equations for those N particles and which is a very 

time and memory consuming thereby limiting on the maximum number of 

particles for study. Hence, in that respect, the idea of using a single particle 

and later introduction of bins in the  phase space will literally produce the 

effect of N particles. However, the problem lying with the binning is how 

to fix the walls of  the bins in the  phase-space? 

The Chapter 5 describes the result of analytical study considering damp- 

ing length as a function of surface mass density with ring height as a pa- 

rameter for Titan -1:0 resonance and comparison with observed data is also 

provided. 

The Chapter 6 describes the main conclusion of the thesis on the bend- 

ing wave observed in the planetary ring. 
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Chapter 1 

Introduction 

In the Universe practically everything rotates and every rotating self 

gravitating object flattens to become a disk. The flattening of the 

rotating system is basically due to the opposite action of two major 

dynamic forces - the gravitational and the centrifugal forces. To main- 

tain the equilibrium, the system is forced to flatten along the axis of 

rotation. However, exceptions are observed for systems having large 

velocity dispersion or a large pressure like spherical star clusters, star 

themselves etc. It is to be noted here that collisional and collisionless 

systems are totally different. In spherical systems with dissipation or 

inelastic collisions, the high thermal velocities of the particles decrease 

through friction or shocks leading to formation of disks. This process 

is much slower in almost collisionless stellar system. If the collisionless 

stellar systems have a relatively large rotational angular momentum, 

theoretically it is possible for them to become a disk provided various 

instabilities develop naturally on a dynamical time scale. This means 

that stable systems do not evolve into a flat disk. 

Theoretical calculations regarding disk modeling [4, 13, 14, 21, 

22, 44, 70], usually, consider thin disk approximation which signifies 

that the ratio of disk height 'h' to its distance 'R' from the central 

gravitating object like planet should be very much smaller than unity 

i.e. h/R << 1. .This approximation, in general, holds true for all 

galactic, circumstellar and circumplanetary rings. However, hot and 

thick accretion disk are observed for accretion disks of black holes and 

other binary systems. Physically the approximation 'h/R' signifies 
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that the disk considered by us behaves as "cold" disk and the pressure 

gradient is comparatively much smaller than two main dynamic forces 

- the gravitational and. the centrifugal forces. To understand the effect 

of pressure gradient, let us consider the Euler equation as, 

dv  Ov 1 0 P  
dt - Ot + ( v . V ) v  = - - - - + F .  (1.1) p Or 

where F is the force per unit mass acting on the disk particles such 

that, 

F = Fgr~v + Fcen,ri]~g~ = - ~ 7 r  (r, t) + Fcentri/~g~t. (1.2) 

I f h / R  << 1, 10p ~ -  << F. Also the condition h / R  <:< 1 limits the 

characteristic scale length L of spatially regular structures such that 

L : h < L _< R. Hence the smaller the ratio h / R ,  the more char- 

acteristic scales one can fit into the range between h and R and the 

richer will be the possibilities for the formation of structures in an 

astrophysical disk system. 

Besides the gravitational andcentrifugal force terms, other actively 

operating forces include thermal and viscous mechanisms, self-gravity 

of the disk itself and the electromagnetic effects. At the equilibrium 

gravitational attraction by the central gravitating object and the out- 

ward centrifugal force balance each other resulting in the interesting 

features of weaker mechanisms playing in the disk make it dynamical 

and evolving which make study of the disks as important. 

The astrophysical disks become more interesting due to presence 

of differential rotation [28] within the disk itself. At equilibrium, the 

gravitational attraction between the disk and the massive central body 

balances the centrifugal force originated due to rotation, following 

Kepler's law. In that case, the angular velocity of the disk is w = v/~ M 

i.e. w o c r  -3/2 where r is the distance between the disk and the 

central object. The disk is then termed as "Keplerian disk". The 

effect of differential rotation originates for a ring of width 5r such 

that angular velocity for the portion of the disk nearer the central 

object wl oc r -3/2 while that for the portion furthest from the central 

object is w2 (x (r + 5r) -3/2. The differential rotation 5w = wl ~ w2 

produces a shear on the particles within the disk causing deformation. 

Physically, this means a large scale flow of shear . 
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Circumstellar and circumplanetary ring systems have viscosity. 

Viscosity, in conjunction with the rotational shear of disk, is a con- 

stant energy source within the disk and transfers energy from this 

large-scale shear flow i.e. the orbital energy of the disk into heat 

which is manifested as random motion of particles within the disk. 

The power of energy source, for example, in case of Saturnian ring 

system is about 100kW. This production of energy by viscous dis- 

sipation in the disk makes it possible to develop various instabilities 

and formation of regular spatial structures - "Self - organization" of 

the systems. 

The effect of viscosity means effect of collision among particles. In a 

planetary ring with a moderate optical depth, a particle usually travels 

over a distance comparable to the circumference of an orbit between 

successive collisions. However, most of this journey is traveled in the 

tangential direction. Since our primary interest is on the efficiency of 

diffusion in the radial direction, the typical radial excursion between 

successive collisions may be regarded as the relevant scale for the mean 

free path. If a typical particle experiences at least two collisions per 

orbit around the central planet i.e. wc _> f~/~r i.e. r _> 1, the radial 

mean free path may be approximated as ,~ = c/wc, where c is the 

velocity of dispersion. If the number of particles in a ring is relatively 

sparse i.e. r << 1, the collisional frequency may be assumed to be 

small compared with the orbital frequency. Here the radial movement 

of the particle is bounded by the orbital eccentricity e so that the 

mean free path approaches the upper limit ae "." c/f~ where a is the 

semi-major axis of the orbit. For arbitrary value of T both limiting 

values of ,~ [16, 28] may be given as, 

C 2 

_ ( 1 . 3 )  
f~2 (1 + r2)" 

For a typical particle, the mean radial excursion after n such collisions 

may be approximated by the random walk expressions, Ar  = n�89 

Thus the time scale trw required for a typical particle to randomly 

walk over a distance Ar  is given by, 

- - ( 1 . 4 )  
W c 7" 
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In combined presence of viscosity and differential rotation, a vis- 

cous stress is developed that  leads to an outward transfer of angular 

momentum and a general radial spreading of the ring. The efficiency 

of angular momentum transfer is determined by the magnitude of the 

viscosity u. If u = f(r),  the timescale for spreading in the radial di- 

rection [47] is tv ~ (Ar) 2/u,  as long as the radial spreading is small 

enough so that there is no substantial change in u. In general, viscos- 

ity is given by u = wcA 2 so that  the time scale for radial spreading is 

given as, 

t ,  ~_ ~ F t  2 (1.5) 
0 2  c 

The kinetic and fluid treatments of diffusion process indicate the 

dependency of u on both r and c. 'Consider two neighboring particles 

having nearly circular orbits separated by a radial mean free path. The 

difference between their pre-collisional circular velocities is of the order 

,kfl. After a collision, they will each acquire an orbital eccentricity of 

the order of A/c= c/fla. The energy change per unit mass associated 

with this gain in the eccentricity is of the order of (A/a) 2 = ~2fi2. As 

the kinetic energy per unit mass associated with eccentric motions i.e. 

c 2, its rate of change may be determined as Et -~ c2w~ ~- A2~2w~. In 

a fluid mechanical theory, this tendency for increasing c is normally 

attr ibuted to the effect of viscous stress. In a differentially rotating 

disk, this viscous stress continually converts energy from that  stored 

in the systematic shearing motion into that  associated with random 

motion 

#,  = \ (1.6) 

at a rate per unit mass given by Eq. 1.6, which is of the order u~ 2 

for the Keplerian orbits. In the absence of any dissipative process, 

the particles would be "heated up" in the sense that  the dispersion 

velocity would increase indefinitely. However, typical collisions be- 

tween particles within the ring are partially inelastic, resulting in the 

dependence of the coefficient of restitution of the mat ter  of the ring 

grains. 

Also the last but not the least interesting fact about the disk sys- 

tems is that they have very long life time. It is natural to see that  the 

ring should disperse, while in reality rings have distinct boundaries. 
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In the present work, let us discuss only the planetary ring system. 

Especially, the collective behavior of ring particles will be addressed 

using numerical and. analytical modeling. 

1.1 Historical Background 

The physics of planetary ring system is interesting for its classical 

dynamic and evolving nature. Rings and disks became a part of as- 

tronomical discussion only in the seventeenth century. In 1644, Ren@ 

Descartes introduced the idea that the whole space in the Universe is 

filled with vortices of invisible matter and there is no space left without 

vortex. Therefore the Earth had a vortex extending to and including 

the Moon. Galileo discovered four Jovian satellites in 1610. In 1655, 

Christian Huygens discovered a satellite of Saturn about which he 

published in 1659 [37]. 

Huygens, believing on the Descartesian model, compared the vor- 

tices of the Earth and the Saturn. In case of Earth, rotational period 

about its own axis is one day while for the Moon, the orbital period 

about is slightly more than 28 days. Huygens also measured that the 

orbital period of Saturn's moon is about 16 days. 'He concluded that 

the rotational period of Saturn is around half-a-day. Hence, all the 

matter between the Saturn and its moon had to rotate with the pe- 

riod between half-a-day and 16 days. But, it has been observed that 

the "handles" or ansae, although show slow changes over many years, 

remain unaffected over a perio d of 16 days. Huygens then concluded 

that Saturn must be surrounded by a ring system [37]. Huygens wrote 

"It is girdled by a thin flat ring, nowhere touching, inclined to the 

ecliptic". He even predicted the future dates for disappearance of the 

rings: July 1671, March 1685 and December 1700. The rings properly 

disappeared in accordance with Huygens' predictions, confirming the 

correctness of his theory. 

The structure of Saturn's ring system was again questioned as 

sometimes the ansae was observed as handles and sometimes not. A 

solid thick ring structure could not explain all those phenomena. At- 

last the debate between Fabri and Huygens concluded tha t the  ringlike 

structure of Saturn could be either due to vapor/fluid or collection of 
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dust particles of varying sizes [77]. In 1675, J. D. Cassini observed 

that the ring system was divided by a dark band which was later 

named after name as.Cassini's gap. In 1785, Laplace showed that a 

solid ring, in uniform rotation, would break apart under the action of 

centrifugal forces and the system would probably have to consist of a 

large number of independent "ringlets" [41]. 

In 1847, Roche discovered an important analysis for stability of 

ring system - the Roche Limit [58]. Roche determined that within a 

certain limit from the planet, any satellite and presumably also any 

ring would be torn apart by the tidal forces. Saturn's ring system lie 

within that limit [19]. In 1848, C ring was discovered. It was observed 

that Saturn was visible even through the C ring. Saturnian ring system 

provided one of the best classical system to study leading to Maxwell's 

classic essay in 1857 that conjecture that Saturn's ring system could 

only consist of an indefinite number of very small particles [2]. The 

theory also conjectures that the stability of the system also requires 

countless independently orbiting satellites. 'Also, later, Keeler and 

Campbell spectrographically measured the Doppler shift and thus the 

Keplerian orbital velocities of constituent particles. 

In 1866, Kirkwood initially suggested resonant perturbations by 

Jupiter caused the radial gaps and clumps in the asteroid belts. In 

1867 he extended his theory to the Cassini division and in 1871 to 

Encke's division [55]. During the late nineteenth century, observers 

visually noted many elusive subdivisions in both the A ring and B 

rings, and also numerical extensions of Goldsborough [27] who ex- 

tended it to the outer edge of the A ring and the inner edge of the B 

ring [21, 22]. 

Observations of the brightness attributable to the rings [52] has 

clearly demonstrated a strong brightening with decreasing phase an- 

gle, the so called opposition effect. Seeliger [62, 63] explained the effect 

in the light of Maxwell's many-particle ring as due to variations in mu- 

tual shadowing by these many particles in a layer significantly thicker 

vertically than the size of a typical particle. This concept has come 

to be known as the classical, or many-particle -thick, ring model. 

Improved ground-based observations gradually revealed structural 

and orbital details, like topologically fiat but spread out structures, op- 



C H A P T E R  1. I N T R O D U C T I O N  7 

tical transmission through the rings, structural variation with radius, 

different reflectivity depending on wavelength and observational ge- 

ometry. It was easy to model theoretically for the smooth and contin- 

uous ring structures. However, since 1977, the idea changed abruptly 

as nine narrow black ringlets were discovered around Uranus. Prof. 

J. C. Bhattacharyya discovered [6] rings as they occulted a star ob- 

served from the Earth . In March and July 1979, very diffuse thick 

rings were discovered around :Jupiter by the Voyager spacecraft. Even 

waves developed in rings have also been observed. At present we have 

swarms of data  obtained from spacecrafts like Cassini, Voyager 1 and 

Voyager 2, Pioneer 10, 11, Ulysses etc. 

1.2 Types of Astrophysical Disks 

In general, astrophysical disks may be classified into three classes: (1) 

galactic disks, (2) disks around stars and (3), planetary disks. Though 

the main theme of this thesis is the planetary ring systems, other sys- 

tems are reviewed for comparative analysis as far as physical processes 

are concerned. 

1.2.1 Galact ic  D i sks  

The history of galaxies starts with Galileo in 1610, when he described 

in his "Stellar Herald" that  "The Milky Way is an accumulation of 

countless stars". In 1750, Wright in his booklet "Original Theory or 

New Hypothesis of the Universe '~ interpreted the Milky Way as a disk- 

shaped galaxy as seen from inside and bright nebulae as accumulations 

of faraway stars like our own Galaxy. In 1845, Lord Rosse discovered 

M51 galaxy and found it to be a spiral galaxy. In 1929, Hubble dis- 

covered the recession of galaxies, i.e., the expansion of the Universe. 

He also became the father of the present-day galactic classification 

systems. 
From the whole range of galaxies, our interest is only to those 

galaxies which have disk-shaped components. A typical spiral galaxy 

is a set of disks of stars, gas and dust embedded in a spherical halo. 

Further discussions on galactic disk will be found in Page 36. 
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1.2 .2  S te l lar  d i sk  - t h e  a c c r e t i o n  d i sk  

The disk around a star is basically an accretion disk formed in a binary 

system. The evolution of a component in a close binary system often 

leads to one of the stars increasing in size to become a red giant and 

filling its Roche lobe. This means that matter  from the surface of that 

red giant starts to flow out in the form of a jet - mainly through the 

inner Lagrangian point - into the attraction sphere of the second star. 

The non-vanishing angular momentum of the outflowing matter  leads 

1~o the formation of an accretion disk around the second star [36, 57]. 

Study of accretion process started with Bondi [7]. 

An analysis of the luminosity curve of a binary star makes it pos- 

sible to establish accurately the geometry of the binary system and to 

detect whether there is a disk within it [15]. In the binary system, the 

viscosity of gaseous accretion disk is very large due to turbulence [23]. 

The shape of the accretion disk depends on the balance between 

heating and cooling. The disk is heated by the incident jet of matter  

from the companion which possesses a large amount of kinetic energy, 

the viscous dissipation of orbital energy, and the radiation of stars in 

the system. It is cooled by the emission from its surface. Efficient 

cooling leads to the formation of a thin diskl The dynamics of thin 

accretion disk becomes more interesting due to launching of spiral 

waves by the resonating action of neighboring star(s). If the heating 

source turns out to be more powerful, the disk becomes thick and 

looks like a torus [36]. 

Accretion disks are also observed for more compact objects like 

black hole [64]. There are also more exotic variants of accretion disks of 

stars themselves which surround massive black holes in Active Galactic 

Nuclei(AGN). An accretion disk in such a system is a powerful source 

of radiation, processing an appreciable fraction of the rest mass of 

matter  falling onto the black hole into quanta and it is one of the 

m0st efficient energy sources of our Universe. 

1.2 .3  P l a n e t a r y  d i sk  s y s t e m  

It is very curious that only four planets in the Solar system have rings. 

They are Jupiter, Saturn, Uranus and Neptune. It is also interesting 
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to note that these planets have higher numbers of satellites. Rings 

observed are, generally very distinct, containing particles of varying 

size. Particles having size of the order of micron are subjected to 

forces like gravitational, centrifugal, Lorentz force, radiation pressure, 

background dragging, self gravity of the disk and satellite forcing while 

for particles of larger size, the locus of the particle is determined by 

the gravity alone. Hence, in general, all the ring structures around 

the planets may be divided into two categories: "primary" and "sec- 

ondary" rings. Primary category contain dense rings with rather large 

particles - upto several meters in size. These rings have a rather longer 

life time. They include A, B and C rings of Saturn, nine dense Uranian 

ring, the primary Neptunian rings ~ncluding Adams ring with segments 

and the main Jovian ring with larger particles. The secondary ring 

type are rarefied gaseous dusty rings which need a constant influx of 

matter in order to exist for a long time. The E and G ring of Saturn, 

the gaseous torus on the orbit of Io and the rarefied Jovian rings - 

the halo and the gossamer and faint rings belong to the secondary 

category. A detailed view will be given in Chapter 2. 

1.3 Mot iva t ion  of the Present  S t u d y  

The astrophysical disk systems are the practical experiences of com- 

plex systems of classical mechanics. Especially, the planetary rings 

are not only the most complex, they are also nearest so that we may 

get a large amount of data usingspace and ground-based probes. The 

planetary rings are also similar to larger systems like galactic disks 

except that they have smaller scales. Theories made on the structures 

of planetary ring systems can be safely applied on other systems. One 

of the fundamental problem of the physics of the planetary rings is 

to find the dynamics of a typical particle within the ring. This moti- 

vates us to work on the planetary ring system. In this thesis, particle 

dynamics within the planetary ring to produce collective effects - es- 

pecially the formation of waves. Our main attention is for the spiral 

bending wave in the planetary ring systems has been discussed. We 

analysed the bending wave for Titan -1:0 resonance. The importance 

of studying this mode is that it is the only known bending wave that 
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propagates outward, away from the Saturn having only one arm and 

the wave pattern rotates opposite tot he orbital direction of the ring 

particles. In the C ring, there is no other observed bending wave till 

today. However, the thickness of the C ring is not yet determined with 

accuracy as far as the damping length of the wave is concerned. The 

damping length observed from Voyager radio occultation data indi- 

cates outside the wave region, the surface mass density is of the order 

of ,-, 0 . 4 g m  - c m  -2 and a local ring thickness is of the order [59] of 

_< 5 meters. Still there is some discrepancy in theoretical modeling 

and observed data. However, we analysed this case with first numeri- 

cal simulation with the FORTRAN codes and then we analysed with 

the analytical models to tally the physics behind the ring problem. 



Chapter 2 

The Planetary Rings 

So far, it was clear to some extent that  rings are formed from particles 

of varying sizes and mass. However, it was not clear how and why the 

rings were formed. So, at present there are three basic questions those 

come to mind, namely: 

�9 Where does the matter  come from to form the rings? 

�9 Why are the particles limited in size, and, why do the rings not 

agglomerate into satellites? 

�9 What determines the boundaries of the rings? 

To seek the answers to these questions, let us discuss the origin of 

planetary rings. 

2.1 The Origin of the Rings 

In the early days, date back to early seventeenth century, it was a 

common belief to consider the planetary ring as the uncoagulated 

remnant of a circumplanetary disk from which the regular satellites 

were formed, In 1847, Roche [58] considered the equilibrium condition 

between tidal forces and the self-gravitation of a satellite and put for- 

ward the hypothesis that  the Saturnian rings would be the result of 

the break-up of a large body through the tidal pull near the planet. To 

realize the hypothesis, let us turn back to review the classical Roche 

limit. 
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�9 ~ ga 
O ~ ~ " : . . . . .  ~ "  �9 O' 

R-b  
R+b 

Figure 2.1: Nature of tidal force acting on the satellite 

2.1.1 The Roche limit 

Roche considered a satellite rotating synchronously with hydrostatic 

equilibrium around a planet and its main distortion is due to the tidal 

force and the centrifugal force. 

Let us consider that the planet of mass M, radius P~ and density Pv 

is situated at the point 0 in the Fig.2.1. Let R be the orbital radius 

of the center of the mass of the satellite. Let R 4- b are arbitrary 

points on line OCO'. Let the satellite has a uniform density p having 

a spherical shape with radius rs. 

Now the gravitational acceleration is given by, 

GM 
g- -  R2 .  (2.1) 

which opposes the centrifugal acceleration 

f = fl2R. (2.2) 

Hence for any pair of interior points of satellites R 4- b lying on OCO', 
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the resulting acceleration becomes 

G M  Gin(b) 
g~ + gM + gin(b) ----- f12 (R • b) (R :h b) 2 :t: b--- V -  

- 4- (39t 2 4 - - 5 -apj b, ( 2 .3 )  

where, ga=the centrifugal acceleration, gM=the gravitational accel- 

eration in the field of the planet, gm(o=the gravitational acceleration 

due to the central part of the mass of the satellite inside the (constant) 
4 71" -b 3 radius b, m(b) _-- ~ p , b < rs and rs is the radius of the satellite. 

From Eq. 2.3, it is clear that the left hand side must be positive 

and  so from the right hand side we observe that, 

4 
3fl 2 > -~rGp (2.4) 

should be satisfied and the resulting acceleration at the points R :h b is 

directed away from the sphere b=constant. Hence the condition given 

by the Eq. 2.4 is the necessary and sufficient condition for the break-up 

of the hydrostatically stable "fluid" satellite when the intermolecular 

cohesive forces are not considered. 

Let us consider the outer limit for Roche zone be Rn inside which 

a self-gravitating satellite is broken up by the tidal forces. Then in 

the equilibrium condition, 

4r~" = 2~rG \ R R }  pp x 2r, + 2~rG k~r~} p x 2r, 

1 

or, RR = 2.4535 (2.5) 

1 

or, RR = 1.52 (2.6) 

The Roche model provided by Eq. 2.5 is interesting and also pro- 

vides answer to all questions asked at the beginning of this Chapter. 

The replies may be given as: the material of the broken-up satellite 

accidentally reached the danger zone could construct the rings; the 

tidal forces prevent the existence of satellites within the ring zone and 

boundary of the rings may be given by Eq. 2.5 and Eq. 2.6 such that 

at that radius the tidal forces are sufficiently decreased to become 

comparable to the self-gravitation force. 



CHAPTER 2. THE P L A N E T A R Y  RINGS 14 

In 1947, Jeffreys [39] showed that the intermolecular cohesive force, 

which was neglected in the computation of Roche, becomes significant 

for small satellites and becomes dominating over self-gravitation and 

as a result he found an additional condition for the break-up of the 

satellite: 

Pm~ < 1.680r~ s (2.7) 

The Eq. 2.7 may be understood by considering a simple case of ice. A 

body of ice having tensile strength of lO~dyne/cm 2 will not be broken 

up in the Saturnian ring zone, if its radius r8 < 200kin. This means, 

that the ring particles which are much smaller cannot be the result of 

a tidal break-up of a large satellite: fragments of a satellite are already 

stable against tidal break-up. Hence Roche hypothesis is challenged by 

the condensation model according to which the rings are the remnants 

of a circumplanetary proto-satellite cloud. The tidal force becomes one 

of the controlling factors to prevent accretional growth of particles by 

intermolecular cohesion and the resulting formation of satellites. Here 

it is to be noted that, even till today, it is not exactly clear whether 

tidal force prevents accretion or breaks up the growing particle. 

It has been understood that the formation of ring and satellite is 

affected by the processes of formation of planets which may be grouped 

into two categories. 
If the planets were formed by large scale gravitational instabilities 

like Jeans instability with rotational effects, then the entire mass of 

the planetary disk would collapse into a giant gaseous protoplanet on 

a time scale of the order of the period [11]. 

The second class of model requires solid core of 1 to 10 Me that  

trigger gas accumulation [51, 61]. Based on hydrostatic models, one 

could say that if the time scale of gas accumulation were <: ] 06 yrs, 

the protoplanet would be too hot to allow condensed ice to exist as 

close to Saturn as the present rings, and the ring material would have 

to be preserved as a gaseous disk for ,-, 106 yrs after formation, or 

else be transported inward from a larger radius after that  period of 

time. On the contrary, if gas accumulation took >_ 106 yrs,  ice may 

have been stable at the ring radius during the time of planet growth, 

and the storage problem would not exist. 

From all these aspects, it is clear that  two important cases may 
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Zone Type 

Jupiter 

rings-V rock 

I-II rock 

III-IV ice 

Saturn 

rings ice 

I-V ice 

Titan (CH4) 

Uranus 

rings (ice) 

I-IV (ice) 

o k R M as h ag p 

(lO '~ (g) (lOlO) _ (glc ) 
c m s  cm -2) c m  o s 

1000 1.8 1022 

1000 7 1026 

�9 250 2 0 . 0  3.1026 

250 1.5 1024 

250 5 5.1024 

100 12 1.4.1026 

250 0.5 10 TM 

250 6 3.1024 

10 

10 4 

3.10 3 

10 3 

10 3 

3.10 3 

10-1 

3.10 2 

0.3 100 3 .10  -~  

1.5 100 7.10 -~ 

3 25 3.10 -6 

0.1 20 2.10 -5 

0.6 20 3.10 -6 

3 5 5.10 -7 

0.1 3 3.10 -1~ 

1.5 3 7.10 -8 

Table 2.1: Numerical models of primitive circumplanetary disk. Here 

'zone' = Planet zone, 'Type' = types of solids, 'R' = orbital radius, 

'M '  = mass of solids, 'as' = surface density of solids, 'h '  = equivalent 

thickness of gas disk, 'ag/as' = ratio of solid to gas surface density, 'p' 

= mid:planet gas density. 

happen. If satellite formation is an efficient process, then the disk 

masses may have been much greater. On the other hand, if the satellite 

formation was concurrent with the slow growth of the planets, then 

the instantaneous mass of the disk may have been much less. Hence 

an opt imum case may be considered which is presented in Table 2.1 

[34]. 

The primary issue debated in the origin problem is, therefore, 

whether they represent a failure of the innermost portion of a cir- 

cumplanetary disk to accumulate into satellites, or whether they are 

the result of the disruption of pre-existing satellites. 
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2.1.2 The Coagulation Model  

After Jeffrey's work Eq. 2.7, people started to think that coagulation 

of particles by accretiola process was actually responsible for ring for- 

mation. This is because the ring particles which were much smaller 

could not form by satellite break-up model. To verify the validity 

of this doctrine one needs to check time scales of various dynamical 

processes acting on the planetary ring/disk system. 

A proto-satellite disk is subjected to viscous shear leading to disk 

spreading. Ideally disk must not have any turbulence and hence 

timescale for viscous spreading would be ,-~ 109 yrs.  However, in 

reality, due to presence of sufficient matter  in the circumplane- 

tary disk with the surface mass density _> 104g/crn: (cf. Table 

2.1), disk would be optically thick leadirrg to unstable disk and 

hence turbulence [43]. The time scale to migrate over a distance 

of the order of orbital radius due to viscous shear is t ,,~ a2/L,e. 

Here, u ,=  effective kinematic viscosity ,,o (Av) (5) ~Re, where 

Av is the turbulent velocity and is on the order of the prod- 

uct of the eddy scale 6 times the radial gradient of the orbital 

velocity which is about Ft/2 for Keplerian motion and Re is 

the effective Reynolds number. Hence ~'~ ,,- (5) (f~/2) (5) ~Re 

= If the turbulence is driven by thermal con- 

vection in the vertical direction, then 5 will be on the order of 

the vertical scale height: ~ ,,~ h = VT/gt. The value for the R~ is 

expected to  be ~ 1000 [43]. The time scale in years of viscous 

spreading of a turbulent disk becomes, 

1 

t,'-, R, v--~T "~ 10 ~ ~ , (2.8) 

where, (mp/m|  is the mass of central body in solar units, 

(a/a~)  is the orbital radius in AU, T is the temperature of 

the gas disk. The dissipation time for the solar nebula itself 

is thus on the order of 105 years; while for a circumplanetary 

disk about Jupiter or Saturn, t ,-~ 100 year. Hence, it is ques- 

tionable whether the protoplanetary accretion disk could exist 

as a steady state feature under these circumstances. 
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* If a planet experiences infall of matter from the solar nebula, 

both solid and gaseous components would feel drag [35]. The in- 

falling mat ter  may have a very little angular momentum. Harris 

[35] derived the rate of inward spiraling of a satellite for the case 

of mat ter  arriving with no preferred angular momentum with 

respect to the planet, and infalling from the solar nebula with 

originally negligible velocity relative to the planet. Hence the 

rate of inward spiraling is, 

2 drnp, da ~ _3pv r v _ _  (2.9) 
a fls ars  m p  

where, p, r and m are the density, radius and mass of the planet 

(p) or satellite (s). The flux of mass on the satellite is 

dm__ 2 ~_ 2 da (2.10) 
rn, 5 a 

Harris [35] also obtained similar equations for the rate of mass 

gain and orbital evolution of an optically thick ring (r) subjected 

to mass infall as, 

dmv "~ 1, (2.11) 
m p  

da ,,~ 2 dmr ,,~ 2 dmv . (2.12) 
a m r  m r  

If such a ring existed throughout the growth of the planet, then 

approximately half of the total planetary mass would have ar- 

rived via the ring infall. This mass would have arrived with or- 

bital angular momentum and hence would over-spin the planet. 

Thus the scenario of a growing planet continuously surrounded 

by an optically thick ring is contradictory to the observed spins 

of the planets. 

�9 Next let us view the time scale of coagulation of the solid par- 

ticles through mutual collisions [61]. The time scale for growth, 

assuming that all the particles stick on contact is given by, 

t ,,~ m 8  , , ,  ~2psr~ (2.13) 
m~ crsf~ " 

The coagulation time scales in the various zones of the disk mod- 

els of Table 2.1 are given in the Table 2.2. 
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Planet 

J.upiter 

ring/V 

I -  II 

III-  IV 

Saturn 

Rings 

I - V  

Titan 

Uranus 

Rings 

I - IV 

Time scale (yr) 

(r, km -1) 

3 

0.05 

0.3 

0.02 

0.02 

0.3 

100 

2 

Table 2.2: Coagulation time scale in models of circumplanetary disks 

Therefore, we can write-up a summary of all sorts of dynamical 

time scale appropriate within the context as Table 2.3. 

Processes Time Scales(yr) 

Viscous spreading (gas) 

Gas drag on particulate disk 

Gas drag on satellite 

Infall of circumsolar matter 

on disk 

Infall of circumsolar matter 

on satellites 

Coagulation/fragmentation 

>_100 

10- 1000 
~ 200 (rs km -1) 
> 10 -3 (planet growth time) 

> rs/rp (planet growth time) 

,-~ 0.1 (r., km -1) 

Table 2.3: Summary of dynamical time scales 

In a turbulent disk, coagulation may be abandoned, although vis- 

cous spreading would help to dissipate very rapidly. For a quiescent 

gas, aerodynamic drag would remove a particulate disk from inside 

the Roche limit while small particles outside the Roche limit would 

coagulate with shorter time scales. Hence it is not comprehensible to 
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assume solid particles as small as those of the present Saturnian or 

Uranian rings have survived either within the Roche zone or outside 

for time scale of the order of l0 s yrs should be appropriate. 

The model of ring origin in which the ring mass is preserved in the 

form of satellites until after planet growth is complete is believed to 

be the correct model. 

2.1.3 The Break-up Model  

Harris conjectured that satellites were formed or were captured into 

orbits about giant planets and then spiraled inward when the planet 

growth was completed, and/or any circumplanetary gas was dissi- 

pated, the inward migration ceased, leaving the presently observed 

satellite systems, plus additional small satellites in the regions presently 

occupied by the rings. Such satellites would not necessarily be dis- 

rupted [t, 39], but may have persisted intact for sometime, much as 

the case for Phobos today [20]. However, if subsequently disrupted 

by a large meteoritic collisions, these small satellites would be unable 

to re-accumulate into larger ones, due to the planetary tidal forces, 

and could instead evolve collisionally into the presently observed ring 

system. 
The time scale for the process of mutual collisions may be esti- 

mated by Eq. 2.13 where r,  should be taken to be on the order of 

that of the parent body (,,~ 200kin for Saturn or ,,~ lOkm for Jupiter 

and Uranus). The time scales for Jupiter, Saturn and Uranus are 30 

yrs, 4 yrs and 1000 yrs respectively. The collision depends on the size 

of the particles such that as the size of the particles become smaller 

and smaller, collisions become more and more gentle. Since the im- 

pact velocity between the particles should be at least on the order 

of the escape velocity of the larger fragments from the surface, the 

kinetic energy of such an impact can be equated with the limiting en- 

ergy for fragmentation to define the size [32, 33], to which the largest 

fragments to be reduced as, 

r \ 4---~] ~ 2 0  m, (2.14) 

where, Ec is the critical specific energy for fragmentation in ergs/s, 
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Ec "~ l0 T for solid rock and Ee ,,~ 2 • 10 s for ice. 

However, the particle velocity v in a protoplanetary disk with a 

power-law mass distribution: dN(m)  = cm-qdm is determined by the 

mass m and the radius ~i of the largest particle : v = v /Gm/|  where, 

| is the Safronov parameter [61] which, for the case q < 2, would be a 

few units so that v turns out to be less than the characteristic velocity 

v ~ x /Gm/a  - -  the escape velocity at the surface of a larger particle. 

So the above values for Ec, indicate that rapid collisional fragmen- 

tation should cease when the largest fragments are for ice ring ,-~ 5kin 

in radius, for a rocky ring no longer than 4Ohm in radius, though 

observation indicate this number to be around ,,~ lOkm. The main 

reason for this discrepancy lies in - a) not considering the differential 

rotation of the disk, b) large shear velocities near the planet. 

Nowadays, it is considered also that the collisional break-up model 

must accompany the usual accretional growth such that  two particles 

after collision may stick together [24, 26]. According to them, the 

enhanced destructibility of the particles in the rings is convected with 

the large magnitude of the shear velocities due to the differential ro- 

tation of the rings. Quasi-grazing collisions have the largest relative 

velocities in which case the semi-major axes of the colliding particles 

differ approximately by twice the radius of the particles. The break- 

up in quasi-grazing collisions decreases the volume of a large particle 

at the rate 

(2.15) 

where, ~V is the volume of the layer swept away in a single collision 

and we is the frequency of the grazing collisions. It has been assumed 

that a cylindrical segment of height /Is is swept away resulting in 

~V ~, 7raH~. Here, we may be estimated as, 

( 2 a H ~  ( ~ )  
we ,~ \ a2 ] Wo "- Wo, (v,) 3 a(a) 1 + Wo = pa -~ ' 

where, w0 is the total colllsional frequency, u is the relative velocity of 

the particles and cr(a) be the surface density of a particle of size a. 
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Assuming that in each grazing collision a volume element 

(a)~ 
5V. . .  m a 

s 

breaks up as 

= 4 7 r a  2 

and we get the rate of decrease of particle radius as, 

(2.16) 

() (v2) 
da - 4x/P3,2fl4a3cr(a ) 1 +  (2.17) 

,/3 (~) ,  ~ ' 

where, e~ is the break-up energy of particles per unit volume. 

Using a(a) = (4~3)apt(a), r('a) = n(a)rra 2, where, o'(a) is the 

surface (number) density of particles of size a, r ( a )  is the optical 

depth, we rewrite the loss equation as: 

() (v2) da - 16~ ( p )3 /2~ 4a6n (a )  1 + (2.18) 
~/ ~3--~ , ~ j  ~ 

In case of the accretional growth of particle of size a, if it moves 

with velocity v in a medium of volume density Ps, mass increase rate 

will be, 

d t ]  ~ v p ' ~ r ( a + O  2 1+~-~ , (2.19) 

where, 4 3 (= grpa ) is the mass of the particle and l is the character- m 

istic size of the particles in the accreting medium. Using the relations 

v ~- h/~2 and a ~- hps, where h is the thickness of the disk and a t h e  

integral surface density of the disk, one may write the rate of growth 

for particle radius as: 

(da'~ + cra 1 + 1 + (2.20) 
\ d t ]  ~ 4p -~ ' 

with 
~0 a tna:lr o = o'(a)da (2.21) 

where, area, is the maximum size of the particles in the ring. 

From Eqs. 2.17, 2.18, 2.20 and 2.21, it is clear that  there exists one 

.critical particle size ac, for which there is a balance between accretion 
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and break-up, i.e., (da/dt)  + [a=~or = (da/dt)-Ia=~cr. Using this, we 

can obtain an expression for the break-up energy particles per unit 
volume (for l ,~ a) as: 

e, ~ 4.4p~2a 2 (2.22) 

If we take a ~ / a  ~ 1, from Eq. 2.7, it follows that tidal force break up 
a 10m sized object, if P.~.~ ,,, p~22a 2 ,,, lO-2dyne - cm -2. 

From Eq. 2.22 using collisional break-up mechanism with a ,-, 10m: 

c, ~,, p~2a2 , ~  lO-2erg/cc.  Though both the cases provide identical 

numbers, the physics is different. The break-up energy depends on the 

size of the particles and can be very small since the tensile strength is 

governed by another phenomenon called se l f -  adhesion. 

Hence it is considered that planetary rings are the relics of a cir- 

cumplanetary proto-satellite disk and only this model provides correct 

answers to the first three questions, which were addressed at the be- 

ginning of this Chapter. 

2.2 Ring Characteristics 

In the last Section the origin models of the ring were reviewed. Due 

to variation in masses, spins, orbital distance from the Sun, magnetic 

field etc., rings of different planets show different characteristics. Let 

us now study the basic ring characteristics of the four outer planets 

- Jupiter, Saturn, Uranus and Neptune for which rings have been 

observed. Basically the planetary ring comprises of particles of varying 

size ranging from sub-microns length to few kilometers. Usually the 

forces acting on these particles include gravitational force due to the 

planet itself, the centrifugal force due to rotation in the orbit, the 

gravitational forcing due to satellites of the planet, Lorcntz forccs 

due to magnetic field field of the planet and the charge develop in the 

planetary magnetosphere, radiation loss as Poynting- Robertson drag, 

aerodynamic drag and the implicit collisional forces. Lorentz force is 

active in case of particles of micron and sub-micron sized particles [3] 

like those in Jovian magnetosphere, Saturn's E and F ring, Uranian 

rings etc. 
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2 .2 .1  T h e  J o v i a n  s y s t e m  

The Jovian ring system was the only one to have been discovered by 

spacecrafts. The ring system was detected from back-scattered light 

from Voyager - 1 (V1) as V1 passed through the Jovian equatorial 

plane [56, 72] (observed in narrow angle frame FDS 16368.19) in 1979. 

Some physical parameters for Jupiter is given in Table 2.4. The 

physical parameters concerning the satellites are given in Table 2.5, 

while parameters concerning ring system is given in Table 2.6. 

Mass (1 M.,) 

Equatorial radius (1 R j) 
Polar radius 

Heliocentric distance 

Sidereal period 

Synodic period 

Mean orbital speed 

Main magnetic dipole moment 

Magnetic dipole tilt 

317.8/1//+ = 1.901 x 1027kg 
7.14 x 104km 
6168 x 104km 
5.20AU = 7.78 x 10Skm 

ll.86yrs 
398.88days 
13.06km/s = 15.7Rj/day 
4.2 x IO-4TR~ 
9.8 ~ 4- 0.3 ~ 

Table 2.4: Useful physical parameters for Jupiter 

New results on morphology of Jovian ring system appeared after 

analysis of 25 images captured by Voyager 2 (V2) [56, 65, 66]. Us- 

ing the images, a limited range of viewing geometries were sampled 
with about 50% taken in the back-scattered (low solar phase angles) 

light and the rest in front-scattered. It was observed that the Voyager 

images of the Jovian ring was much brighter in forward than in back- 

scattered light. Observations in forward scattered light are sensitive 

mainly to micrometer / sub-micrometer sized grains, while measure- 
ments in back-scattered light give information on grains of larger size 

and macroscopic bodies. 
Interpretations of the Jovian ring data have evolved gradually. The 

most prominent feature is the narrow main ring itself which is dubbed 

as 'The main ring' [38]. All investigations noted the presence of some 

additional scattered light inward from the ring's normal boundaries 

[38]. This extra brightness is apparent in every image taken at high 

phase angles (FDS 20691.27 - 3.02). It was conjectured that a con- 
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Satellite R e i R8 

(Rj)  [xlO 31 (deg) (km) 

A 

Sinope 331.93 275 153 20 

Pasiphae 329.13 378 148 35 

Carme 316.53 207 163 22 

Ananke 296.92 169 147 15 

Elara 164.38 207 28 40 0.03 

Lysithea 164.15 107 29 20 

Himalia 160.78 158 28 90 0.03 

Leda 155.38 148 27 8 

Callisto 26.37 7 0.281 2400 0.2 

Ganymede 14.99 0.6/1,5 0.195 2631 0.4 

Europa 9.40 10.I/0.1 0.470 1569 0.6 

Io 5.90 4.1/0.01 0.040 1815 0.6 

Thebe 3.11 15 0.8 ?x55x45 0.05-0.1 

Amalthea 2.54 3 0.40 135x82x75 0.06 

Adrastea 1.81 0 0 12.5x10x7.5 0o05-0.1 

Metis 1.79 4 0 ?x20x20 0.05-0.1 

Table 2.5: The Jovian satellite system. Here 'R'  = Orbital radius 

of satellite, 'e' = eccentricity, 'i ~ = inclination, 'Rs' = radius of the 

satellite, 'A' = Albedo. 

Ring Radius Width Thickness optical 

(Rj) (Rj) (km) depth 

The gossamer ring 1.72-2.94 1.22 < 4000 10 -~ 

The bright ring 1.72-1.81 0.09 < 30 4 x 10 -6 

The faint ring 1.00-1.72 0.72 < 1000 7 x 10 -s 

Halo 1.00-1.72 0.72 > 10,000 5 x 10 -6 

Table 2.6: Ring characteristics of Jovian system 

tinuous disk of material extends from the main ring's inner edge all 

the way down to Jupiter 's atmosphere. Finally, the third component 

- the Halo was recognized as a vertically extended cloud of material 

which envelops the entire system. Later, Showalter et al [65] discov- 
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ered another ring called the Gossamer ring from the V2 image (FDS 

20693.02). The main Jovian ring :is probably defined by a population 

of macroscopic bodies visible in back-scattered light. This popula- 

tion has an optical depth of about 3 • 10 -6 corresponding to a total 

cross-sectional area of 2 • 104km 2. Adrastea and Metis have about 

one-tenths of this area. Hence, either these two moons are largest ring 

bodies or the macroscopic bodies may have originated as the ejecta 

from a major impact into one or both of the ring moons. Still there 

are lots of physical aspects of the ring which remain unexplained. 

2 . 2 . 2  The  Saturnian s y s t e m  

The Saturn's ring system is the most studied ring system. Some physi- 

cal parameters related to Saturn is given in Table 2.7 and ring-satellite 

system in Table 2.8. 

Mass (1 Ms) 
Equatorial radius (1 Rs) 
Polar radius 

Heliocentric distance 

Sidereal period 

Synodic period 

Mean orbital speed 

Main magnetic dipole moment 

Magnetic dipole tilt 

5.685 x 1029g 

60330km 

6.68 x 104km 
5.20AU = 7.78 x 10Skm 

ll.86yrs 
398.88days 
13.06km/s = 15.7Rs/day 
4.2 x IO-4TR3s 
9.8 ~ -4- 0.3 ~ 

Table 2.7: Useful physical parameters for Saturn 

Saturn's ring is classically divided into ring systems like A, B, C, 

D, E, F and G ring systems. Rings A, B and C contain far more 

material than the peripheral D, E, F and G rings and measured as 

normal optical depth: 

r(~) = / /n(r,z)Q~(r,~)rrr2drdz, (2.23) 

where z is the direction perpendicular to the rings, n(r, z) is the num- 

ber density per radius increment (cm -4) of particles of radius r, and 

Qr ~) is the extinction efficiency of the particles at wavelength ~. 
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Satel l i te  R e 

(Rs) [• 
i Rs 
(deg) (km) 

A 

Phoebe  214.686 163 175.3 

Iapetus  59.030 28.3 7.52 

Hyper ion  1481.1 104.2 0.43 

T i t an  20.253 29.2 0.33 

Rhea  8.736 1.0-0.3 0.35 

Dione 6.256 2.2 0.02 

Helene 6.256 5 0.2 

Tethys  4.884 0.0 1.09 

Telesto 4.884 - 

Calypso 4.884 - 

Enceladus  3.945 4.5 0.02 

E ring 3-8 - - 

Mimas  3.075 20.2 1.53 

G ring 2.819 ~ - 

Janus  2.511 7 0.14 

Ep ime theus  2.510 9 0.34 

Pando ra  2.349 4.2 0.0 

F ring 2.324 2.6 4- 0.6 0.0 

P rome theus  2.310 2.4 0.0 

Atlas 2.282 2 0.3 

A ring 2.025-2.267 - 

Pan  2.214 7 ? 10 

Cassini division 1.948-2,025 

Huygens ringlet 1.953 0.40 • 0.17 

B ring 1.525-1.948 - 

C ring 1.235-1.525 - 

Maxwell ringlet 1.450 0.34 • 0.04 

Titan ringlet 1.291 0.26 • 0.02 - 

D ring 1.110-1.235 - 

l15x110x105 0.06 

730 • 8 0.5/0.04 

175x120x100 0.2 

2575 • 2 0.2 

765 + 4 0.6 

559 • 5 0.55 

18x?x? 0.6 

524 • 5 0.8 

15x12x8 0.6 

?x12xl l  0.9 �9 

251 • 5 1.0 

[302 000] 

197 • 3 0.7 

[lOOO] 

110x95x80 0.5 

70x58x50 0.5 

55x43x33 0.5 

45 

70x58x50 0.5 

19x?x14 0.5 

[14610] 0.5 

0.5 

[4650] 0.2 

[43] * 

[25520] 0.5 
[17490] 0.2 

[64] ? 

[25] ' 

[7450] ? 

Table 2.8: The  Saturnian  satelli te system. Here 'R'  = Orbital radius 

o f  satellite, 'e '  = eccentricity,  ' i '  = inclination, 'Rs' = radius of the 

satellite, 'A'  = Albedo. 
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Figure 2.2: Saturn's ring as taken from Hubble's space telescope 

Though Saturn's rings were studied from terrestrial telescopes, the 

significant analysis was done using the spacecraft data. The three 

main spacecraft contributor to the program were Pioneer-11, Voyager 

1 (V1) and Voyager 2 (V2) and Still we are waiting for Cassini to send 

data around 2004. The main physical characteristics of the Saturnian 

rings are given in Table 2.9. The main methods of the study by the 

spacecraft were: 

�9 direct photography - the visible range of the spectrum; 

�9 measurement of the light of a star eclipsed by a ring - ultraviolet 

region; 

�9 radio-occultation of Voyager signal by the rings - when the ring 

happens to be between the spacecraft and the Earth. 
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Ring 2h [m] ~ a [g/cm 2] ~ ? ~  [m) 

parts 
Radio Resonance 

occultation theories 

C ring : 

interior 5 0.08 3.2 4- 1.8 1.5 4.5 

exterior 5 0.12 4.3 4- 2.5 1-5 2.4-5.3 

B ring: 

interior 5-10 1.21 70 4- 4 

central 5-10 1.76 - (99 4- 6) 

exterior 1.84 - 

Cassini 20 0.12 18.8 4- 0.5 16 4- 3 7.5 

division 

A ring: 

interior 10-30 0.70 34 4- 6 40 4- 2.5 5.4 

exterior 10-30 0.57 24.4 4- 7.2 34 4- 20 8.9-11.2 

G ring: 105 1 0  - 6  - -  10 -4 

E ring: l0 T 10 -6 - 10 -5 - 

Table 2.9: Main physical properties of Saturnian ring system. Here 

2h = total ring height, ~ = average optical  depth, a = surface mass 

density, r m~* = maximum size of particles. - g  

The important points discovered from satellite data include: 

�9 Rings seemed to have divisions into ringlets. Regional bound- 

aries are defined by significant and fairly abrupt changes in op- 

tical depth. 

�9 Existence of spiral waves due to satellite resonances. Spiral 

waves are divided into two types, namely - density and bending 

waves. The strongest spiral waves are due to the lower order 

resonance. 

�9 The existence of eccentric rings. 

�9 "Spokes". In B ring one could observe spokes which extend 

along the radius and situated on the "corotation radius" where 
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the orbital period is equal to the rotational period of the planet. 

The particle sizes are usually very small. 

Characteristic features of the particle size spectrum. Data from 

V2 Ph0topolarimeter (PPS) [67] and radio-occultation data [76], 

particle size has been estimated. Tyler has shown that the par- 

ticle varies from few millimeters to tens of meters. The particle 

size spectrum n(a)  = na -q has an index q = 2.8 to 3.4 in the 

range of sizes upto the maximum area, = 5 to 10m. However, 
ii 

Showalter et al [67] observed that PPS data shows non-Poisson 

behavior, specially in the A ring. 

2.2.3 The Uranian ring 

The ring system of Uranus was discovered during observation of occul- 

tation of star SAO 158687[6]. The important characteristics observed 

for the Uranian rings were: 

�9 Narrow rings 

�9 sharp edges 

�9 Long lived structures in the radial direction 

�9 eccentric rings 

�9 Rings inclined to the equator 

�9 uniform apsidal and nodal precession 

�9 adjacent broad and narrow ring components 

�9 low albedo ring particles 

The physical parameters for Uranus is given in Table 2.10 and the 

physical properties for Uranian system is given in Table 2.11. 

2.2.4 The Neptunian ring 

In 1980, Nicholson and Jones [54] communicated that ttiey had ob- 

served the occultation of a star by a Neptunian ring on Aug 21st, 
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Mass (1 Mu) 

Equatorial radius (1 Ru) 

Polar radius 

Heliocentric distance 

Sidereal period 

Magnetic Dipole field strength 

Dipole tilt to rotational axis 

8.686 x 102Sg 

25559km 

24973km 

2.872 x 109kin 

84.02yrs 

0.228gauss - R~ 

58.6 ~ 

Table 2.10: Useful physical parameters for Uranus 

1978. The peculiar feature of the Neptunian rings is the absence of 

a second occultation, as if the ring behaves as an arc. Moreover, the 

results of the observation of a star at the same time by two telescope 

indicated that the density of an arc drops abruptly over a distance of 

a few hundred kilometers along the orbit. 

2.2.5 Comparative Analysis 

Planetary ring system consists of particles of varying size and num- 

ber density. The primary rings [26] contain larger particles and hence 

ring has longer life-time. Usually observed around twice the plane- 

tary radii. In general, satellites are observed beyond the limits of the 

primary rings. On the other hand, secondary rings contain grains of 

micron / sub-micron size and hence they need a continuous influx of 

matter in order to exist for a long time. The main Jovian ring, A, 

B C rings for Saturn, denser Uranian rings, primary Neptunian rings 

belong to the primary ring category while the E ring, the G ring, dusty 

Uranian rings and the rarefied Jovian rings belong to the secondary 

ring category. 
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Satellite R e i Rs A 

(km) [• (deg) (km) 

Oberon 582596 :t= 71 0.8 0.10 775 =k 10 

Titania 435844-4- 86 2.2 0.14 805 -F 5 

Umbriel 265969 + 48 5.0 0.36 595 + 10 

Ariel 191239 + 57 3.4 0.31 580 + 5 

Miranda 129783 + 66 2.7 4.22 242 =k 5 

Puck 86006 + 25 (0.1) 0.3 77 =t= 3 

Belinda 75256 =t: 29 (0.1) 0.0 34 :k 4 

Rosalind 69942 :]= 26 (0.1) 0.3 29 =t= 4 

Port ia  66090 =k 34 (0.2) (0.1) 55 :t= 6 

Juliet 64350 =t= 27 0.6 (0.1) 42 :t= 5 

Desdemona 62675 :t= 24 (0.2) 0.2 29 + 3 

Cressida 61776 =t= 27 (0.2) 0.0 33 :t= 4 

Bianca 59172 + 26 0.9 (0.2) 22 :t= 3 

Ophelia 53794 =t: 39 10.1 (0.1) 16 :k 2 

e r i ng  51149 7.94 0.000 [20/96] 

1986u1P  50023 (0.0) (o.o) [1-2] 
Cordelia 49771 =k 17 0.5 0.1 13 =E 2 

5 r ing  48299 (0.04) (0.002) [3/9] 

-y r i ng  47627 (0.10) (0.006) [1/4] 

~ r ing  47176 (0.00) (0 .001) [1 -2 ]  

firing 45661 0.44 0.005 [7/12] 

a r i n g  44718 0.76 0.015 [7/12] 

r i ng  4 42571 1.06 0.032 [2-3] 

r i ng  5 42235 1.90 0.054 [2-3] 

ring 6 41837 1.01 0.062 [1/3[ 

1 9 8 6 U 2 R  37 - 39.5 '• 103 - [2500] 

r ing  l 50660 =k 30 - - [16] 

a rc  1 41760 :t= 30 - - [2] 

a rc  2 41470 =t= 30 - - [4] 

a rc  3 38430 :i= 50 - [2] 

r i ng  2 38280 + 50 - [1] 

0.24 

0.28 

0.19 

0.40 

0.34 

0.07 

[1.2/4] 
[0.1] 

[0.3/0.4] 

[1.3/2.3] 
[0.1-0.4] 

[0.2] 
[0.3/0.4] 

[0.3] 
[0.5-0.6] 
[0.2/0.3] 

[0.001-0.0001] 

[0.1] 
[0.2] 
[0.2] 
[0.2] 
[0.2] 

Table  2.11: T h e  Uran ian  satel l i te  system. Here  'R '  = Orb i ta l  radius  

of satel l i te ,  'e '  = eccentrici ty,  ' i '  = incl inat ion,  'Rs '  = radius  of the  

satel l i te ,  'A '  = Albedo.  
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Mass (1 MN)" 

Equatorial radius (1 RN) 

Polar radius 

Heliocentric distance 

Sidereal period 

Magnetic Dipole field strength 

Dipole tilt to rotational axis 

1.025 x 1029g 

24764km 

24341km 

4.498 x 109kin 

164.8yrs 

O.142gauss - R~ 

46.9 ~ 

Table 2.12: Useful physical parameters for Neptune 

Satellite R e i Rs 

(103km) [xlO 31 (deg) (km) 

A 

Nereid 5510 750 27.6 170 4- 25 

Triton 354.8 < 0.5 158.5 1353 4- 3 

Proteus 117.6 ? < 1 200 4- 10 

Larissa 73.6 7 < 1 95 4- 10 

A d a m s  r ing  62.9 0.47 0.06 [15-50] 

Galatea 62.0 ? < 0.1 79 4- 12 

1 9 8 9 N 4 R  53.2-59 - [5800] [0.0001] 

Le Ver r i e r  r ing  53.20 - [100] 

Despina 52.5 7 < 1 75 4- 15 

Thalassa 50.0 ? < 1 40 4- 8 

Naiad 48.0 ? 4.5 27 4- 8 

1 9 8 9 N 3 R  41.9 - [1700] 

0.14-0.035 

0.6-0.9 

0.06 

0.056 

[0.01-0.1] 

[0.011 

0.054 

[0.00011 

Table 2.13: The Neptunian satellite system. Here 'R' = Orbital radius 

Rs radius of the of satellite, 'e' = eccentricity, ' i '  = inclination, ' ' = 

satellite, 'A' = Albedo. 
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R e s o n a n c e  and the  spiral 

waves 

Saturn's ring system occulted Voyager-I spacecraft on Nov 13, 1980. 

The spacecraft transmitted dual frequency monochromatic radio sig- 

nals directly down to Earth through the Saturn's ring system. These 

signals interacted with ring particles. The attenuation, phase-shift and 

broad-band frequency content of the received signals revealed consid- 

erable structure in the ring along the occulted track [49, 50, 74, 75]. 

The radio occultation data provide detailed optical depth and phase- 

shift measurements over the radial extent of the rings at 3.6- and 13- 

cm wavelengths. 

One of the most intriguing Observed phenomena is the formation 

of the spiral waves. Observational data analysis and dynamical the- 

oretical modeling of ring system have identified two kinds of spiral 

waveforms - density waves and bending waves. Density waves are spi- 

ral patterns of enhancement and depletion of ring material, formed 

by particles coerced into coherently nested eccentric orbits. In-plane 

periodic forcing due to satellites at resonant locations in the rings can 

excite density waves. Bending waves are vertical corrugations of the 

disk, formed by particles in coherently nested inclined orbits. Satellites 

in inclined orbits supply the necessary resonant vertical perturbations 

to ring particles to excite bending waves. The study of waves in plan- 

etary ring got importance as a diagnostic tool for local ring properties 

such as surface mass density, viscosity of ring and thickness. By mod- 
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eling the radial dispersion of wavelength in a wave, it is possible to 

infer the local surface mass density of the ring in the wave regions and 

the radial location of the resonant forcing. The shape and extent of 

the wave can provide upper bound of ring thickness and the mass of 
the perturbing satellite. 

3.1 Basics  of Orbits  and R e s o n a n c e s  

Let us consider the basic equations and physics of orbits around a 
planet. Let is consider cylindrical coordinates (r, 0,r Let us also 

consider a free particle orbiting in a circle of radius r with the angu- 

lar speed f~(r) in the equatorial plane z = 0 of the planet assumed 
axisymmetric with an associated potential r z). 

At the equatorial plane, centrifugal equilibrium is obtained from, 

r~2(r) = 0r (3.1) 
" ~ r  zm 0 ' 

where, ~(r) = [a%~]�89 Mp being the mass of the planet, G being 

universal gravitational constant. 

Ideally, the particle will move around the planet in a Keplerian 

orbit, assumedto be our reference orbit. If the test particle is 

displaced by an arbitrarily small amount, it will oscillate freely in 

the horizontal and vertical directions about the Keplerian orbit with 

epicyclic frequency n(r) and vertical frequency p(r) respectively. The 

expressions for those frequencies are given by Lindblad's theory of 

epicyclic motion given as, 

~rr[ ' (3.2) 

 2(r) [Oz2jz=o 

Hence, #(r) and ,~(r) are related to ~(r) as, 

+ = 

(3.3) 

(3.4) 
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If we consider planet as a spherical one then, #(r) ,-~ n(r) ~ fl(r). In 

reality, planet such as Saturn, is oblate, e.g. Saturn, #(r) > fl(r) > 
~(~). 

Consider now a satellite of mass M orbiting the said planet with a 

small eccentricity eM in a plane inclined by a small angle iM with re- 

spect to the planetary equatorial plane t = 0. For small perturbations 

from a satellite, the particle residing in a Keplerian orbit around the 

planet responds as a multi-dimensional, forced linear harmonic oscil- 

lator. The direct contribution of the satellite to the total gravitational 

potential is: 

e M ( r , r  - -  

- a M  [r (tl + r 2 - 
l 

cos ( r  r  ( z . ( t ) -  z)~] -~ 

(3.5) 

Here suffix 'M '  corresponds to terms for moon and the other terms 

are for test particle. The most important point is that  r M ( t  ) -- a M ,  

GM(t) = r  ~Mt and zM(t) are smah quantities and are periodic 

functions, where a M is moon-orbit radius, ~M is Keplerian local veloc- 

ity of moon. To a sufficient degree of approximation, rM(t) and | 
have period 2?r/gM, while zM(t) has period 27r//zM. Since •M(r, r z, t) 
is periodic in time t and angle r one may Fourier decompose in these 

variables. The result can be written in elementary form in general as, 

F .  = n e  [r z) exp (i (~t - me)) ] ,  (3.6) 

where, the disturbance frequency due to forcing due to the moon is 

w. This perturbation frequency w at which perturbation is launched 

at the inner vertical resonance as seen from the inertial frame is given 

by 

w : m ~ M  "4- n # M  "4- P ~ M ,  (3.7) 

where, m, n, p are non-negative integers. In general n is even for hor- 

izontal forcing and odd for vertical forcing. Actually for n=odd and 

p=0 or even for vertical forcing and n=0 or even and p=odd for hori- 

zontal forcing [68]. The forcing amplitude associated with disturbance 

frequency w of Eq. 3.7 is proportional to el~sinlnliu [30, 68]. 
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Now the test particle will undergo horizontal(Lindblad) resonance 

a t  r = rL, where, 

ma( L) = (3:s) 

and it will suffer vertical (inclination) if its radial position is at r = rv 

satisfies, 

- ma( v) = (3.9) 

Large satellites exist exterior t o  the main ring system, and hence 

~'~M < ~" So inner resonances are important  than outer ones. The 

satellite forcing associated with the resonances characterized by a ra- 

tio of integers which contain a difference N between numerator and 

denominator must be proportional to a product of (N - 1) factors of 

small quantities, eM and sin iM.  Thus the strongest inner horizontal 

resonances correspond to the ratio m : m - 1, involving only the cir- 

cular part of the satellite motion, while the strongest inner vertical 

resonances correspond to the ratio m + 1 : m - 1 involving one factor 

of the inclination of the satellite orbit. 

3.2 Galactic disks and planetary ring 

Before discussing waves in detail let us explore possibility of any re- 

semblance of galactic disks with planetary ring. In spite of a difference 

in scale length by a factor of a trillion, spiral galactic disk structure 

and Saturn's ring system seem to have many superficial similarities. 

Both of these structures are spatially thin structures supported pri- 

marily by centrifugal equilibrium between gravitational and centrifu- 

gal forces. Both consist of innumerable discrete objects whose random 

motions are very small compared to their Keplerian speed. Both of 

them have varieties in internal structure. Collective gravitational ef- 

fects can explain much of the internal structures of these objects. 

However, there is a crucial difference in the relative scale of col- 

lective processes which operate in galactic disk and in Saturn's rings. 

The natural scale of self-gravitational disturbances in flattened distri- 

butions of matter with surface mass density a and angular rotation 
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speed ~ is roughly given by [73], 

21rGa 
L =  ~2 ' 

where, n is the epicyclic frequency related to fl as, 

n2(r ) = r-  3 d (3.10) 

In spiral galaxies, the scale L is comparable to the radius r of the disk, 

whereas in planetary ring system L << r. For example, in Saturn's ring 

cr ,-- 50g/cm 2, ~ ,~ 2 x 10-4s,i 1, L ,,~ 500cms where r ,-~ 101~ The 

reason for the difference in the ratio of L to r is that the ratio of mass 

in the disk to that  in the rest of the system is much smaller for Saturn 

than for spiral galaxies. 

Next comes the role of physical collisions in galaxies and planetary 

rings. Physical collisions play an important role in galaxies only for the 

dynamics of the interstellar gas. Interstellar gas is a minor component 

of total gMactic mass. On a large scale, physical collisions are respon- 

sible for galactic shocks [25, 69, 78] and therefore spiral structure is 

observed. 

In planetary rings, inelastic collisions between ring particles affect 

the large scale structure more directly [31]. First, in the absence of 

the perturbing effects, collisions ultimately settles ring particles in the 

equatorial plane of the planet. Second, collisions quickly dissipate 

random motions of all but the smallest ring materials as smallest ring 

materials are subjected to strong electro-magnetic forces. Third, col- 

lisions lead to friction, which' generally works to destroy structure in 

the ring system. 

The physical collisions must be accompanied by shear for dissipa- 

tive effects. The level of shear friction in the rings is characterized 

b y t h e  kinematic viscosity u. Let us consider ring material of normal 

optical depth r near to unity. Let us also consider that ring materials 

are made up of particles with characteristic size R possessing RMS 

random speed c in a typical direction. Their kinetic theory yields 

formulas for kinematic viscosity [8] as, 

~, = ~/R2r, c < 2~R, (3.11) 
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) v = 1 ~--T 2 , c > 2FIR. (3.12) 

The typical vertical displacement of a particle from the central ring 

plane is c/~.  Now Eq. 3.11 is applied when vertically sweep of a ring 

particle, i.e. the characteristics ring thickness, become comparable 

to or smaller than the size of the ring particles. In case of Saturn's 

rings, the random speed c has been found to be so small that  the non- 

circular excursions of ring particles are atmost tens of meters, much 

less than the scale of resolvable icollective phenomena [17, 42]. Hence 

to a high degree of approximation, the effects of non-circular motion 

for contribution to pressure may be ignored. Also in usual cases of 

spiral waves of planetary ring, the study is restricted to "long waves" 

only ignoring "short waves" while "short waves" play a prominent 

role in the theories of spiral structure of disk galaxies [46]. The non- i 
zero random speed is considered only in so far as they contribute to 

the gradual damping of density waves and bending waves through the 

viscosity Eq. 3.12. 

3.3 Spiral Density Waves 

As discussed earlier, the density wave is basically a collective response 

of a planetary ring to horizontal forcing by an external satellite. For 

small amplitude assumption, the theory can be linearized for sim- 

plicity. In the linear approximation , horizontal and vertical motions 

decouple from each other and hence these two effects may be treated 

separately. 

The dynamics is usually studied assuming a two dimensional gas 

disk and treated with Boltzmann equation. Shu[70] considered a ki- 

netic treatment with encounter-less Boltzmann equation which is iden- 

tical to fluid treatment using the gas-dynamical equations with zero 

pressure and viscosity. However, Goldreich and Tremaine [29] also 

considered a two dimensional gas disk having pressure p acting only 

in the horizontal plane and is related to the surface mass density c~ 

by, 

p = K a  "Y. (3.13) 
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The enthalpy 77 and sound speed c satisfy the relation 

('~ - 1 ) 7  = c2  = --.dP (3.14) 
da 

Here we are discussing the analysis of density waves following Shu's 

t reatment  which uses the fluid treatment.  The disk is considered as 

an infinitesimally thin disk of matter  of surface mass density a(r ,  0, t). 

Let hOD(r, O, Z, t) be thepotent ia l  due to self-gravity and must satisfy 

Poisson's equation 

1 0 { OhOD) 1 02hOd 02hOd 4~rGcrS(z), (3.15) 
r Or ~ r - g ~ r ]  + r 2 O0 -----Y + Oz -----Y - 

where, 5(z) is the Dirac delta function. 

Now let us consider a satellite of mass M which orbits the planet 

with a small eccentricity eM in a plane inclined by a small angle iM 
with respect to the planet 's equatorial plane z = 0. Let (rM, OM, ZM) 
be the time-dependent cylindrical coordinates of this satellite. The 

direct contribution to the total gravitational potential is given by Eq. 

3.5. Let u(r,O,t) and v(r,O,t)  be the r and vq components of fluid 

velocity. The equations of compressible fluid dynamics for purely hor- 

izontal motions in a pressureless inviscid disk may be written as 

Oa 1 0  1 0 ( a v ) = 0 ,  (3.16) 
ot + (ro~) + 7 ~  

Ou Ou y o u  v2: 0 
0--7 + U-gr  + - - -  - - -  - r 0b q r Or [hOP "~- hOd qt. hOM] (3.17) 

Ov u c9 v Ov 1 0 
0--7 + -r ~r (rv) + r O0 . . . .  r O0 [hOD + hOM] . (3.18) 

The system as a whole is considered to have balanced centrifilga.1 

force with some small perturbations. To consider the linear response of 

satellite forcing Eq. 3.5 second order perturbation terms are neglected. 

This makes 

~ ( r , ~ , t )  

u ( r , o , t )  

v ( r , o , t )  

= ao(r) + ~e[S(r)exp(i(wt  - m'O))], 

= O+Tge[U(r)exp( i (wt -m9))] ,  

= rf~(r) + ~ e [ V ( r ) e x p ( i ( w t -  toO))], (3.19) 
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where, strictly speaking, one must consider f~(r) to satisfy the relation 

r~2(r) = [ 0 ] ~rr(~P + ~DO + X~ ~PM0 (3.20) 
z = 0  

To relate the Lindblad.resonance with the galactic disk, one may 

use Oort parameter B(r) to relate Keplerian angular velocity ~(r) as, 

r d~ 
B(r) = f l (r)  + [ d'-'r-' 

tc2(r) = 4B(r)f~(r), (3.21) 

where, 2B(r) is the estimate of ithe amount of vorticity in the disk i.e. 

V x v .  

Here r is the potential that corresponds to the equilibrium disk 

of surface density a0 and ~ r is the time-independent axisymmetric 

part of the potential due to all of the planet's satellites. The equation 

Eq. 3.20 is more accurate than Eq. 3.1 and is generally used for more 

general case like that of closed binary stars, the solar nebula, etc. 

Using Eq.3.19 in Eqs. 3.16, 3.17 and 3.18, we may derive linearized 
sets as 

�9 

i(w - ma)S  + (rtroU) - ~maov = 0, (3.22) 
r 

i ( w -  mf~)U- 2f~V = O -~(r  + eM), (3.23) 

~r im (r + CM), (3.24) i ( ~ -  mn)v + ~ u  = r 

Here Eqs. 3.23 and 3.24 provide ffPD(r, z : 0) and ff~M(r, z : O) 

for z = 0 plane in the ring, and r can be written in linearized 

form of Poisson's equation from Eq. 3.15 as shown below which may 

be derived from integrating Eq. 3.15 in the closed neighbourhood of 

z = 0 under the assumption that eD is continuous across z = 0 while 

its derivative along z axis reverses sign. 

1 0  (rO~PD ~ 02ff~D rn 2 
r Or \ - ~ r  ] + Olzl 2 r2 CO = 0 for Izl > 0, (3.25) 

s(~) - 1 { O ~ D ~  (3.26) 
2~c \ o - ~ ]  i,l=0+ 
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solving Eqs. 3.22, 3.23 and 3.24 we obtain 

U = iAu(~D + ~M), 
V = AV(OD + r 
S = AS(ggD + (~M), (3.27) 

where, Au, Av, As are the real differential operators given by, 

1 [ - ( w -  Ay = -~ 

1[s 
nv  = ~ [2~ dr ] m 

7 (o., - ma) , 

A s = ( w  1 l d  ~ c r o A v ) ,  (3.28) - ~ a )  (;N~~ + 

where, D is the determinant of the coefficient matrix associated with 

Eqs. 3.23 and 3.24 : 

D = a2 _ (w - mf~) 2. (3.29) 

The equation Eq. 3.29 is dearly understood as a discriminant for 

the difference in frequency f rom the Lindblad resonances Eq. 3.8. 

The equations also provide some physical significances. Singularities 

may be observed in the Eq. 3.28 for D - 0 in case of Lindblad 

resonance r = rL and corotation resonance r = rc for m f l -  w = 

0. Away from the resonances, the general solution to the Eq. 3.25 

breaks into two parts - wave and non-wave zones. The individual 

waves satisfy homogeneous equations and are free density waves as 

per Lin-Shu theory. The non-wave part is particular solution of the 

nonhomogenous equation. It must be noted that  the division into these 

wave and non-wave parts is applicable for zones excluding resonances. 

If we assume, 

c v ( r ,  z = 0) =- F ( r ) ,  (3.3o) 

where, F( r )  is rapidly varying function 

we get, 

02r 
Or 2 

02(I) D 
+ - -  - 0 for Iz[ > o. (3.31) 

OIzl ~ 
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This leads to the nonhomogenous equation, 

dOD isrD _rdOM m2~ 
r dr 27rGa-------~o ~D = dr + (w : ~ )  CM. (3.32) 

To drive the free spiral density wave part, one may consider free 

solution in the WKBJ form as, 

CD(r ,O)=r  , (3.33) 

where, r  k is real and Ikr] >> 1 and hence this solution becomes 

rapidly oscillating. 

We reach to the dispersion relation as [45], 

D + (kc) 2 - 2~ra~lkl = 0. (3.34) 

and its solutions are given by 

]k[= c2 + c  k c2 ] - ~ -  , (3~ 

where, ~ = +1 for "short waves" and c = - 1  for "long waves". Since 

k may be positive and negative, wave may be leading and as well as 

trailing. 

3.4 Spiral Bending Waves  

Analysis of bending waves may be carried out in one of the several 

ways. Shu [68, 70] analysed the spiral bending waves as the long 

density waves. In that study Shu analysed the bending waves as a 

whole as observed from a stationary laboratory frame. However, it 

may be also interesting to carry out the analysis of motion of each 

dust grain within the warped ring since it may give us more basic 

features, though it may be a local description. For global view of 

bending waves one may refer to Shu [70]. 

Chakrabarti  [13, 14] worked on analysis of equation of motion of 

a single particle in the warped self-gravitating ring of finite thickness. 

The approach describes equation of motion of test particle as seen 

from the frame placed in the warped ring. Since this approach is 

quite a new approach and provides ~ome more insight about particle 
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dynamics, we are discussing it first, while later we shall discuss on the 

fluid dynamics using the W K B J  formalism to achieve the dispersion 

relation. 

3.4.1 The Particle Dynamics  

Let us choose a right handed Cartesian coordinate system (X, Y, Z) 

at a radial distance r from the center of the planet. The X axis points 

radially outwards, the Y axis points towards the azimuthal direction 

and the Z axis points upwards vertically normal to the equatorial 

plane of the planet as shown in Fig.3.1. The frame is rotating around 

the planet with the local Keplerian velocity gt(r). Let the amplitude 

of the vertical oscillation be e. Let m be the mass of the dust grain at 

( ~ , y , z ) .  

Now, let O be origin of reference frame placed at the mid plane 

of the ring having coordinates (x*, y*, z*). The projection of normal 

drawn from the particle to the ring has components xl = x - x*, 

yl = Y - Y* and zl = z - z*. Let phase of the propagating wave be 

denoted by r and that  of particle is denoted by r 

Hence, 

r = k~x* + kyy* - wt ,  (3.36) 

and 

r = k~x + k u y  - wt.  (3.37) 

Thus, 

r - r = kx (~ - x*) + k~ (~ - y*) = kxx, + k ~ l .  (3.38) 

As per Fig.3.1, X ~ Y ' Z  ~ frame is on the warped-ring system, O ~ 

(x*, y*, z*) is its origin at the mid-plane of the warped ring. Let dust 

of mass md is situated at A (x, y, z) in XYZ frame and (x', y', z') in 

X ~ Y ' Z  ~ frame of reference. 

Hence one may write, 

z' = h+ecosr  

= h + ecos(kxx'+ k y y ' - w t ) ,  (3.39) 
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\ 

X 1 X - X  
Y1 = y -  y*  

Z 1 Z - Z *  
/ ~,x, y, z)• 

Z , 

L~'_.~=~"=' \ \ \ 
O X* x \ ~ x  

Figure 3.1: Geometry of bending waves. Coordinates 

are shown schematically. The rotating frame (X, Y, Z) 

also oscillates vertically with frequency w of the per- 

turbation due to moon 
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0Z I 
> - ek~ sine*, (3.40) 0x' 

Oz' 
Oy' = -el% sin r (3.41) 

Oz' 
= 1. (3 .42)  

0Z t, 

Now unit vector normal to Eq. 3.39 surface is given as, 

1 

x/(&' lOx' )  ~ + (Oz, lav)  2 + (Oz,laz,) ~ 

[ 0z, ,0z, 
'a~' + 3 a--~V + a z , j '  

or,  

+ 1 
]~ [~/1 + e2k2 sin2 r (3.43) 

From Fig. 3.1, 

O-;A = (~ - ~')~ + ( y  - y * ) )  + ( z  - z')k 
= ~xl + ) y l  + kZl, (3.44) 

and~ 

IO'AI = ~/xf + y~ + z~. (3.45) 

The unit vector is given by, 

07.4 ~. Xl yl Zl 
= , + )  + k  

107AI ~/x~ + y~ + z~ ~/X~ + y~ + z~ ~/x~ + y~ + z~" 

= /~. (3.46) 

Then the transformation components between those two fr~tmes of 
reference become, 

Xl ek~ sin r 

~/x~ + ~ + z~ V1 + e2k 2 sin 2 r 
(3.47) 

Yl eky sin r 
= , (3 .48)  

~/xf + y~ + z~ ~/1 + e2k~ sin~,~* 
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Zl 

From Eqs. 3.47 and 3.49, 

1 

r + dk 2sin 2r 

Xl 
- -  = - e k x  sin r 
Zl 

(3.49) 

or, 

x,  = z, ek, sin r (3.50) 

From Eqs. 3.48 and 3.49, 

= - c k v  sin r 
Zl 

or ,  

Yx = z, ekv sine*. (3.51) 

From Eqs.3.38, 3.50 and 3.51, 

r - r 
= k~:(z~ek, s inr  k~(z,  ekysinr 

= zlek 2sine*. (3.52) 

This approach physically shows what will happen while an ob- 

server is at the mid plane of the warped ring. Hence the local vertical 

gravitational acceleration gz can be written as a combination of these 

contribution if we ignore non-circular motion 

gz = gP + gM + gD, (3.53) 

where, gp is due to planet, gM is due to satellite forcing and gD is due 

to self-gravity of warped disk. 

However, initially for simplicity, let us consider only planetary and 

contribution from the satellite forcing. Then vertical component of 

equation of motion is given by, 

= -~t2z + Acosr 

= -~t2z + A cos(k~x + kvy - wt). (3.54) 
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Considering Eq. 3.6. For ]z I << r, the term gr' = -122z as it behaves 

as a restoring force due to linear harmonic oscillator. The solution 

can be written as 

A 
z = (12~ _ ~ 2 )  cos(k=x + k~y- ,~ t )  (3.55) 

Following techniques used by Shu [70], the radial coordinate de- 

pendent amplitude can be assumed to have the form as A(x)  = 

A o e x p  [i f k=dx] using WKBJ  formalism and considering the free solu- 

tion. To get the principal Fourier component of the undamped disk, 

we choose A= = Aoexp [ik=x]. Identifying the wave amplitude with c, 

one can clearly write A0 as A0 = r (122 _ w2). 

Therefore, from Eqs. 3.55,. the force component for satellite forcing 

is given as, 

z,at = r  (122 _ w2)cos(k=x + k y y - w t ) .  (3.56) 

To get components of satellite forcing from Eq. 3.56 in the frame 

Of reference placed at the mid-plane of warped ring system, one has 

to multiply proper components from Eq. 3.47-3.49. 

The equation of motion of test grain can be written as, 

_ (122 - w ~) dk= cos Csin r 
= - 2 1 2 9 + 3 1 2 2 x - v 2 X l  (1 +dk2s in2r  �89 .(3.57) 

= 2125: - u2yl - (122 _ w 2) e2ky cos Csinr 
(1 �89 ' (3.5S) 

and 

7. = - 122z -  U2Zl + (122_w2)r162 (3.59) 
(1 + e2k2 sin 2 6") ~ 

Hence, for the mid plane of the warped ring, we may write, 

z* = ecos (k=x* + k ~ y * - w t ) .  (3.60) 

From Fig. 3.1 we can write, 

Z l  = Z - -  Z 

= z -  ecos (k=x* + kyy* - wt) 

= z -  ecosr (3.61) 
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or, 

z:, : ~ + csin r (q~*) (3.62) 

using Eq. 3.36, we get , 

q~" = - w  (3.63) 

or, 

z'l = z" +: ~w 2 cos r (3.64) 
i 

We assume that the force due to self gravity of the disk on a particle 

is that  due to a flat disk of constant density p. 

vertical oscillations of a particle due to self gravity is, 

Let us define, 

Hence, frequency of 

a 2 -- g~ + u 2. (3.66) 

We consider the z-component of acceleration of the test particle 

acting under centrifugal force, Coriolis force and the moon forcing, 

i.e., enhancing Eq. 3.54, we write, 

~i = - f~2z  - v2zl + (f~2 _ w2) c cos Ct.  (3.67) 

(1 n t- C2k 2 s in  2 ~b*) ~" 

Since k 2 is very small, we  may neglect e2k 2 sin 2 r term in the 

denominator. Hence from Eqs. 3.64 and 3.67, 

= ~'I  - e w  2 c o s  r 
= --~'~2Z-- /22Zl -~- (~r~2 --022) s162 

Using Eqs. 3.38 and 3.61, 

: 

Expanding, 

COS ((~* + Z1s162 sinq~ ") = c o s r 1 6 2 1 6 2 1 6 2  *) 

u 2 = 4~rGp. (3.65) 
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But since k s is very small Czlk2sinr * --+ 0, which yields 

cos(zlck2sinr *) --4 1 and s in(ziek2sinr  *) --4 zlek2sinr  *. So, 

cos (r + zlek 2 sin r ~ cos r - czlk  2 sin s r 

Hence, Eq. 3.68 can be modified from above approximations and 

Eq: 3.66 

: (022 ~'~2)(COS r  "11-/. 25) Z 1 

-Jl" {~ (~-~2 __ 022) (COS r -- CZ1 k2 sin 2 r  

= - - a 2 Z l - - c 2 ( ~ t 2 - - w 2 ) Z l k 2 s i n 2 r  ". 

(3.69) 

Let us transform Eq. 3.69 so that  instead of its time dependence, 

we like to see its phase dependence. Thus, from Eq. 3.36, we may 

derive, 

0r = 020t, 

or, 
0 0 

O t  - - 0 2  0r 

02 02 
02 2 - - .  

O r 2  - 0r *~ 

Therefore, modifying Eq. 3.69 using Eq. 3.7I, we get, 

GQ2Zl Z 1 [ 
(9r  025 a2 q- 2602 

(3.70) 

(3.71) 

r (f~2 _ w2) k2.1 
+ 2 J 

C2 (~'~2 -- 022) Zlk2 COS 2r 

(3.72) 

Let us put, 

and 

~,2 -= ~2k2 (f~2 _ 025) 
W 2 

.2  d (.q2 _ :,2) ks 
r/2 _ + 

w2 2w 2 
c~2 0,2 

Hence Eq. 3.72 reduces to 

_ 72 cos 2r 02zl _ rl2Zl + 
0r .2 2 Zl 

(3.73) 

(3.74) 

(3.75) 
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The first term is simple harmonic. Hence we may assume the 

second term to be a source of perturbation and so zl can be assumed 

as to be expandable to a series. 

N 
_ V" ~2iz(i) (3.76) - z~ ~  1 , 

i=1 
or, 

(3.77) 

It is clear that 3, 2 is the perturbing factor. So we may compare 

coefficients of 72 and its higher terms on both sides. 

From Eq. 3.77, 

= ~ (3.78) 
0r 

This is the zeroth order approximation and the solution can be 

approximated as 

z~~ h sin r/C*. (3.79) 

From Eqs. 3.77 and 3.79, equating the coefficients of 72 terms, 

cos2 'z?) 
0r = - ~ z ~ ' )  + - - - K -  

(3.80) 

This gives, 

h "sin (2 + 7/) r _ sin (2 - 7"/) r  Z~ 1) 
16 1+7/  1 q J 

From Eqs. 3.77 and 3.81, considering 74 terms, 

02Z~ 2) __~2Z~2 ) COS 2r Z~I) 
0r = + -----if-- 

(3.sl) 

z12) h [8sin(4 + r/) r 
= (1 + r / ) (2  + r/) 

4 sin 7/r 
(1 + q ) ( 1  - 7?) 

sin (4 - r/) r ] 

(3.82) 
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Hence the Eq. 3.76 can be re-written as, 

Zl = C +  ~zp~ + ~ ' C +  ~ C + . . .  

h sin qr h7---~216 [[sin (_2 + r/) r  - sin (2 - r/! r  r/ 

h3'4[ sin (4 + r/) r 4sinr/r sin(_4-r/)_r ] 
+ ~ . 8 ( l + r / ) ( 2 + r } ) - ( l + r / ) ( 1 - r / ) - 8 ( 1 - r l ) ( 2 - r / ) J "  

(3.83) 

F r o m  Eqs. 3.50 and 3.51, we can again formulate Xl and Yl as, 

Xl = hek,~ sin r sin r/C* 
h72ek~ ]'sin r sin(2 + 77)r sin r sin(2 - 77)r ] 

16 ], l + r /  - 1 - ~  
h"14ek,~ <( sin r sin(4 + r/)r 4sin r sin r/C* 

+ 64 [, g~  b7~--~-2-7-1-~-) - (1 + r/)(1 - 77) 
sine" sin(4 - r/)r "~ 

- ~ : 7 2 - ~ 5 / '  
(3.84) 

and 

yl = heku sin r sin r/C* 
h72eky f sin r sin(2 + 77)r 

16 [ 1 + r/ 

hf4ek~' I sin r sin(4 + 77)r 
+ 64 L, 8(1 + 77)(2 + r/) 
_ sin r s_in(4--.r/)_r ~ 

8(1 - r /)(2- r/) j"  

sine* sin(2 - r/)r "[ 
- i - - ~  f 

4 sin r sin r/C* 
(1 + r/)(1 - r/) 

(3.85) 

From Eq. 3.61, we may write z as 

z = zl  + e c o s  r  

Using Eq. 3.83, 

z = e c o s C * + h s i n r / C * - m  

h74 [ sin(4 + rl)r 
+ - -~ [8(1 + r/)(2 + 77) 

h9 [~!n(_2 • ~_/~" 
1 6 [  l+r~ 

4 sin r/C* 
(1 + 77)(2 - r/) 

s in(2-  r/)r 
l - r /  

sin(4 - r/)r 
8 ( 1 -  r/)(2 - r/) 

(3.86) 
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Now let us consider the cases for x and y from Eqs. 3.57 and 3.58, 

and since k s is very small we can approximate as, 

and 

= --2f/~) + 3a2x - / 2 2 X l -  (Ft 2 - w  2) e2kxcosr162 ", (3.87) 

e2kycosr162 *. 

From Eqs. 3.50 and 3.51, 

(3.88) 

and 

= --2f~) + 3f/2x -- [/22-t- e(~2 -- w2) c~ r  Xl, (3.89) 

~)= 2f~a?- [/22+ l~ (~'~2 --tD2)COS r  Yl" (3.90) 

Let us put, 

= u 2 + e ( a 2 -  w2) c~162 (3.91) 
Zl 

Hence Eqs. 3.89 and 3.90 can be reformed as 

i: = -2f1~1 + 3 J x  - 5 x l ,  3.92) 

and 
/) = 2fl~ - @1. 3.93) 

Since k, >> kv, we may assume xl >> yl. Thus assuming yl "~ 0, 

Eq. 3.93 yields 

~) = 2f~x. (3.94) 

Using Eq. 3.94 in Eq. 3.92, we get 

Yc = - f l 2 x  - 5x l .  

Again, from Eq. 3.91, 5 ~ u 2, since at the resonance condition 

f~2 ~ w2. Also considering Eq. 3.71 

~, - w 2 02x  _ f t2x  - u 2 x l ,  (3.95) 
0r 
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or, 

~2 x 

9r 

+ w2 

_ sine* sin(4-- q)r 

~2 v2 ~2 u2ekxh 
w--ix - "~xl  - w2 x w2 sin r sin qr 

sin r sin(2 + r / ) r  _ sin r sin(2 - r/)r } ] i ~ _ r /  

sin r sin(4 + r/)r 

8(1 + q)(2 + 7/) 
4 sin r sin r/C* 
( i  + r/)(1 - 7/) 

(3.96) 

Thus, we may write again as final differential equation as follows: 

+ 

+ 

+ 

72 cos(1 + 7/)r 

16( i  + rl) 
-r 2 c o s ( 3  - rl)r 

16(1 - q )  
3, 4 cos(1 - r/)r 

16(1 + 7/)(1 - . t / )  

3 '4 COS(5 -- r/)r 

/ v2ekxh2w------ 7 -  = - cos(1 - r/)r + cos(1 + r/)r 

72 cos(3 + r/)r 0, 2 cos(1 - r/) r 

16(1 + rl) 16(1 - q) 
74 cos(3 + r/)r "l, 4 cos(5 + r/)r 

- + 

512(1 +~)(2  + 7/) 512(1 + q)(2 + 77) 
74 cos(1 + rl)r 74 cos(3 - rl)r 

+ 
16(1 + 7/)(1 - q) 512(1 - 7/)(2 - ~/) 

512(1 - ~/)(2 - 7/)" 
(3.97) 

The complementary function for Eq. 3.97 can be written as, 

XCF = Ax sin (6 + ar (3.98) 

where, Ax and 6 are some constants. Since 6 is some arbitrary phase, 

our system in the warped ring may be chosen so as to make 6 = 0. 

Ax is actually the amplitude of the epicyclic motion as we are dealing 

with x-direction which is along the radial direction. Chakrabarti [14] 

assumed that A is of the order of the half thickness of the ring and 

hence we may re-write as 

XCF = h sin (g/r (3.99) 

The particular integral may be reduced to, 

"2 k h [ !  cos(1 - 
X p  I e,~ " ' ~ 2  La2/O9 2 - (1 - r l )  2 
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+ 

+ 

i + -72116(I + 17) icos( 1 -t- 17)r 
a2/w 2 - ( i  + 7/)? 

- 7 2 / 1 6  + - 7 4 / 5 1 2 ( 2  - ,7) c o s ( 3  17 )~"  

(I - 17)[a2/cv2 _ ( a -  ,D 2] 
-72/16 + -74/512(2 + 17) co+(3 + 17)r 

( i  +17) [a21w 2 (3+17)  2 ] 

-7V512(1 -  17)(2 - 17) 
[ a 2 1 ~  - (5 - 17)2] ~os(5 - 17)r 

] 741512(I + 17)(2+ 17) cos(5 + rl)r . 

(3.10o) 

Hence combin ing  the  Eq. 3.99 and 3.100, the equat ion  the locus 

of the  dus t  grain  is 

= hs in(ar  ) 
~2&:h r l  +-72/(16(1 - 17)) 

+ 2W 2 [ ~'~2/0j2 - (1 - 17)2 

+ 

cos(l  - 17)r 

_ W  (512(1 + :rl)(2 + 7/)) cos(5 + 'q)r 
" [32/~ 2 - (5 + ,D 2] ] 

i + '7'+/(16(1 + ~/)) cos(1 + 17),~* 
a~/co~ - ( i  + 17)2 

'72/16 + - 7 4 / ( 5 1 2 ( 2  - 17)) cos(3  - 17)r 
(i - ,D [a=/~2 _ (3 17)21 
-72/16 + -7"/(512(2 + 7)) cos(3 + 17)r 

( i  + 17) [ml~  2 - (3 + ~)2] 

-741 (512(1 - 7/)(2 - 17)) co s (5 -17 ) r  
[a21~2 _ (5 - ~)2] 

(3.101) 

  cos(V) 
u2ek~hf~ i +-72/16(1 - 17) i 

w3 a~ ( 1 - 1 7 ) 2  ( 1 - 1 7 )  W2 

i + -72/16(i  + 7/) i 
sin(1 + 17)r 

H 3 2 _ ( 1 + 1 7 ) 2  ( i +17 )  

-72/16 + -74/512(2 - 17) I 
~ , ~  ~ 2  ( 1 - 7 ) ( 3 - 1 7 )  -- t ~ -- q/ 

- -  sin(1 - 17)r 

sin(3 - 17)r 
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72/16 + 74/512(2 § r]) 1 
+ as _ (3 + r/)2 (1 + r/)(3 + r/) sin(3 + r/)r 

+74/512(1 - 77)(2 - 7?) 1 sin(5 - 77)r 

"},4/512(1 + 77)(2 + 77) 
as _ (5 § r/)2 

v 2&yh [ cos(1 - .  r])r 
-~ 2 ~  2 [ ( l - r / ) 2  

72 cos(3 + 77)r 
16(1 + r])(3 + 77) 2 

+ . . .  other terms of h!igher perturbations], 

1 sin(5 § r])r 
(8+,)(3-,) 

cos(1 + riO* 72 cos(1 + r])r 
(1 + 77) 2 16(1 + 77)8 

(3.102) 

e cos r -t- h sin 77r 16 - + r/ - 1 - - 

h~A [ s i n ( 4  + 77)r s inr]r  s in (4  - r/)r 

+ - - ~ "  [8 (1  + 77)(2 + ~)  - (1 + 77)(1 - r]) 8 ( 1 -  r/)(2 - ~) 
(3.103) 

Hence the equations for X, Y and Z components are given by Eqs. 
3.101, 3.102 and 3.103. Since ky << k, the variation along the y axis 
may be neglected. 

This anMytical model may be used for calculation of the damping 
length of the bending wave in the planetary rings [4, 5]. To calculate 
the damping length, the energy density of the wave is first calculated 
using Eq. 3.104 and then the 4issipation of the wave is calculated as 
per (3.105) 

1 2 - 2  

E"=uk(O<v">) 20zl 
where, the kinematic viscosity vk is given by 

(3.104) 

(3.1o,5) 

uk = ~ r  max  (R  2, R~vi) . (3.106) 

Here R is the size of the largest particle and Revi is the amplitude of 
the epicyclic motion which is similar to half the thickness of the ring 
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i .e .h .  The group velocity is given by, 

7rGa 
cg = ~ (3.107) 

w - m ~ '  

Hence the damping length is estimated as, 

E~ 
- ~  (3.108) AD ~ Ew cg' 

The numerical simulation based upon this calculation is given in Chap- 

ter 4 using Runge-Kutta algorithm. The numerical calculation is to- 

tally based on the numerical integration of the Eq. 3.109 by the Runge- 

Kut ta  method. 

d2x 
= - 2 ~  + 3 ~ 2 x -  U2Xi- (f l~-  ~ ) d ~ x  cos(C) sin(r 

dt 2 __ 

~ Y  = 2a dx 
dt 2 dt - v2yl " (f~2 - w 2 ) e ~ y c ~ 1 6 2 1 6 2  

d2 z 
dt~ = -~t2~ - .~z, + (ft ~ - ~2)~ cos(r 

where, 

r = [1 + e2g 2 sin2(r '/2, 

Later the numerical simulation results [vide 

(3.109) 

(3.110) 

Chapter 4] were 

matched with the analytical results as may be found in Chapter 5. 

The shear values determined from Chapter 5 matches with that  ob- 
tained from the numerical simulation which may be seen from Chapter 

4. 

3.4.2 The Fluid Dynamics  

The fluid dynamics treatment uses the WKBJ approximation for the 

disk perturbation. In general, it is customary to use the infinitesimally 

thin disk approximation. Also there were some efforts to find the 

result for finite height of the disk, Initially let us explore the thin disk 

approximation. 
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The  th in  disk a p p r o x i m a t i o n  

The entire vertical dynamics is valid for the assumption R >> h. The 

entire vertical dynamics for a small vertical displacement ~ (r, r z, t) 

is given by, 

-~ + a(r)  ~(r ,C ,z , t )  = g~, (3.111) 

where, gz=local vertical force per unit mass, such as gz = gp + g~ + 

gd + gl + grad + . . .  where, gp for planetary contribution, gs for satellite 

forcing, gd for disk self-gravity, gl for Lorentz force component, grad for 

radiation force component and so on . . .  However, for the time being 

we should only consider the effect of gravity and the self gravity of the 

disk itself. However, we like to consider now the forcing due to planet 

and the self-gravity in this discussion. 

Now the planetary component comes as, 

gp = _#2~, for, I~l << r (3.112) 

Next, let us inquire for the contribution that  comes from the disk. 

Whenever a dust grain is pulled above the normal ring plane by the 

satellite forcing etc., then this grain feels gravitational at traction from 

the portion of the whole disk which can see it atop. Hence the dusts 

placed a t  a distance from the normal to the disk plane also exerts 

some force on the test dust. Hence, in effect, the test dust particle 

will feel a smooth surface density profile due to the whole disk and not 

a localised surface density. The density distribution corresponding to 

a pure bending of the disk is 

pd(r , r  = a ( r , r 1 6 2  (3.113) 

such that the surface density is given by, 

a(r ,  r  = E(r)exp [i(~vt - me)] ,  (3.114) 

where, E(r) = unperturbed disk surface density and 5(x) = Dirac 

delta function. We assume, with Lin and Shu [44], that  in the ring 

plane modeled with infinitesimal thickness, there exists a gravitational 

potential term as, 

Cd(r, r z, t) = Cd( r , z ) e •  me)] .  (3.115) 
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Hence the Poisson's equation may be modified as, 

V2r = 47rCE(r)5(z - ~(r, t)). 

Hence just at the ring mid-plane, we may write, ]z:o, 
E(r) - 4~rG r ~=o- 

(3.116) 

(3.117) 

comes 

To solve Eq. 3.119 we consider the potential and its Fourier transform 

as, 

f+5 Cd(r,z) = -~ Cd(r, kz)exp(ik~z)dkz, (3.120) 

and, 
Cd(r, kz) = ~ Cd(r,z)exp(-ikzz)dz,  (3.121) 

OO 

Using Eqs. 3.120 and 3.121, the Fourier transform of Eq. 3.119 be- 

(3.119) 

We assume that E and ~ vanish if r < 0 and also Cd --+ 0 as 
( r ~ + z  2) --4 co, i.e., if r ---r cx~. Following Mark [48], using the 

Green's function technique, we write 

4;d(r, k~)= 
-21rG/)-oo 

Ik~l oo 
E(c~) e x p  (-i~(o~)kz). e x p  (-Ikzll," - 4 1 ) . d ~ .  

(3.123) 

(3.122) 

02 02 ) 
+ ~ = 4 ~ a ~ ( r ) ~ ( z -  ~(r,t)).  

The Eq. 3.116 can be re-written as 

( 0 2 1 0 0 2  ) 
-~r2 + r - ~ r + - ~ z  2 Cd(r,z) 47cGE(r)a(z-r (3.118) 

Since the cross-radial components are too small with respect to other 
terms, it may be neglected from Eq. 3.118. This assumption, in turn, 
ensures the homogeneity of the thin disk approximation. Hence Eq. 
3.118 reduces to 
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Now, gD = - - O T ~ - e ( r  = acceleration in z component on the bent 

disk. Hence, we write 

or, 

0 
Oz [7~e {r 

Z [f a i  dc,2(c~) - dk. exp { ik~z  - i ( (~)k~  + k~lr - ~1} 

/Y ] + dk. exp{iGz-i((a)G-k~lr -~1} , 

z -  ~(a) (3.124) 0 [7~e{r = -2Gf+~176 + (r_o02 
G .2--OO " 

Since a is arbitrarily chosen, the main contribution comes from the 

region where a --~ r. Hence in the linearized limit of smaller height 

with respect to the radial scale of variation of ~, we may write using 

Taylor's series that  

~(~) = ~(a) + ( ( ~ ) ( r  - 4) + . . .  (3.125) 

or, 

(~(r) - f(a))  = ( ( a ) ( r  - a) (3.126) 

In the limiting value, a -+ r, [~( r ) -~(a) ]  2 --+ 0. Let r = 

[~(r) - ~(~)] ~ o. Hence Eq. 3.124 reduces to 

~'(a)(r - a )  (3.127) 

Since we considered infinitesimally thin disk using Eq. 3.115, one 

may adopt a vertical displacement of the infinitesimally thin disk of 

the form 

~(r,r = T~e[h(r,r 
= T~e[H(r)expi(wt- me)l, (3.128) 

where, 

H(r) = A exp [i j r  k(r')dr']. (3.129) 

Here, k(r) and m are the radial and azimuthal wave numbers. The 

quantities w, k(r) and A are in general complex. 
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Thus, 

g / +  a (~ )  ~ = -[09 - m a ( r ) ]  2 h. 

Hence using Eqs. 3.127, 3.129 and 3.130, we may write, 

(3.130) 

[09 - m a ( ~ ) ]  ~ - 2~a~(~ ) sk lk (~ ) l ,  (3.131) 

where, sk = s g n ( k ( r ) ) ,  indicating the leading or trailing pattern of 

the spiral wave. 

Hence, the dispersion relation of the spiral bending wave consider- 

ing the effects due to the planet and the self- gravity due to the disk 

becomes, 

~2 _ [09_ ma(r)]2  = - - 2 - a r # ) S k l k ( r ) l .  (3.132) 

Again, 

( ; )  h = H exp i (wt - me) = A exp i k(r ' )dr '  . exp [i (09t - me)],  

(3.133) 

or, 
r /  

i h N  - h ~  ( I n h ) .  (3.134) 
dr 

So, the previous form Eq. 3.132 the dispersion of the spiral bending 

wave may be written in another convenient form as 

[o_ 
or, 

(3.135) 

D = #2 _ [09 _ mg/(r)]2. (3.136) 

From the dispersion relatiori of the form Eq. 3.132, we may derive 

the group velocity as 

00J 

~6~( r ) sk  
m 

(09 - m a ( r ) ) "  
(3.137) 

T h e  d isk  w i t h  f in i te  t h i cknes s  

Consider a disk of finite half-thickness h is a set of infinitesimally thin 

layers at distances zi from z = 0 midplane. 
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The perturbed surface density for i-th plane 

dcri, = pl(zi)dz. (3.138) 

Hence the perturbed' surface density of the whole disk is 

j_~h a, = px(z)dz. (3.139) 
h 

Outside the i-th layer, potential generated by the i-th layer is gov- 
erned by the Laplace equation, 

02 1 0 1 (92 (92 ] 
~--/r2 + r~rr + r~(9r (9(zZz , )  2 r (r, r z) = 0. (3.140) 

Using the principle of separation of variables, let us consider 

r ( ~ , r  R(~)~(r 

Using Eq. 3.141 in Eq. 3.140, 

or, 

= R(r)Zi(z)e ~mr (3.141) 

1 [02R l OR m 2 I 1 02Zi 
-R L or2 + - Rj - r ~ r2 Z i O ( z - z d  2 

From, Eq. 3.142, 

~ R  l d R (  m 2) 
dr 2 + r--~r + 12 -~ 

Let x = lr, and we get, 

~ R  1 d R (  m 2) 
dx~ + - ; ~ +  1 - 7  

- - t  2 (say), It 2 > o]. 

R = 0 .  

R=O.  

R=cJm(x) ,  

where, Jm(x) is the Bessel's function of first kind. 
Also, 

02 Zi _ 12 Zi. 
O(z-  z~)2 

Z~(z) = Aexp[-[/I [ ( z -  zi)l, z # z~. 

Hence the potential for the i-th layer may be written as 

r162 = A, Jm(rlll) exp[ imr  Itl I(z- zdl]. 

(3.142) 

(3.143) 

(3.144) 

(3.145) 
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Let us consider the contribution in the i-th layer due to the poten- 

tial generated by the i-th layer itself as, 

[( v2)  • + O ( z -  z~)2 r = 4~ad~,~(z  - z~). (3.146) 

Since the finite disk is a continuous substance, the net potential 

contribution on it must also be continuous for all values of z including 

Z - - ' Z  i. 

This means r = r for z = z~. 

Putting Eq. 3.145 which is valid for outside the i-th region to the 

case for within the i-th region Eq: ~ 3.146, 

-21I I 6 ( z -  z,)AiJm(r[l[)exp l i m e - I l l  ] ( z -  zi)]][z=z, = 

47rGda h 6(z - z~)]z=z, �9 

By summing up the contributions of all the infinitesimally thin layers, 

the gravitational potential of the original layer of finite thickness: 

2zrG j_~h 
- exp [ - ] / l [ z -  zi[]p(zi)dzi. (3.147) r 1 6 2  Itl h 



C h a p t e r  4 

N u m e r i c a l  m o d e l i n g  of  T i t a n  

-1:0 r e s o n a n c e  1 

4.1 I n t r o d u c t i o n  

There was confusion in the early i eighties about the vertical thickness 

of the Saturn's ring[18]. Extrapplation of the photometric brightness 

to zero tilt angle yielded a thickness of the order of one kilometer 

[10, 71]. However, Voyager phato-polarimeter experiment indicated 

that  the height is far less, and this puts an upper limit of 200m to 

be the local thickness at the outer edge of the A Ring [40]. After 

identification of oscillatory features as bending waves [68] and after a 

good fit of the ring profile the effective thickness is now believed to 

be far lesser, of the order of a few tens of meters [14, 59, 60]. One of 

the important new ingredients that  has gone into the measurement of 

thickness is a new source of shear which was found to be present during 

detailed numerical study of dynamics of particles inside the Saturn's 

ring. This extra source of shear is found to effectively damp out the 

Mimas 5:3 bending wave within few tens of kilometers and since then 

is considered to be important  [9,53, 60] to describe particle dynamics 

inside a ring. In the present paper, we analyse Titan -1:0 nodal bend- 

ing wave in Saturn's ring and estimate the importance of this new 

source of shear. Our motivation stems from the fact that  this reso- 

1 accepted for publication as letters in the Monthly Notices of Royal Astronom- 

ical Society (MNRAS), v326,pages L23-L26, l l th  Sept. 2001, UK 
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nance occurs much closer to Saturn than the Mimas 5:3 resonance, and 

therefore the angular frequency fl, and hence normal shear ,-~ - 3 f / / 2  

should be much larger. In fact, the damping length for this resonance 

is also smaller (around 85km to reduce the amplitude to a negligible 

value) compared to ' the damping length of about 150kin for Mimas 

5:3 resonance. We verify through our simulation that indeed, the new 

shear is weaker compared to what was obtained in the A ring and as 

a result for all reasonable values of the ring parameters, the damping 

length is very large. However, pending an accurate knowledge of the 

parameters,  such as the thickness, the amplitude of bending waves, 

and the surface density, we determine possible limits of these values 

assuming this to be the only source of shear. We find that in order 

to have this damping length, the upper limit of the thickness of the 

ring is likely to be around 40 meters. Apart from this, we note that  

the distribution of matter  inside a C ring is quite different from that  

of the A ring. In most of the phases of the bending wave, population 

is highest near the edges of the wave, rather than in the midplane. 

In the next Section, we briefly discuss the observed features of the 

-1:0 bending wave and show that the earlier analysis is not conclusive 

in determining the thickness of the ring locally. In w we describe 

briefly our numerical simulation procedure to compute particle and 

velocity distribution in the local vertical direction of the bending wave. 

From these, we compute local shear and dissipation length. In w we 

present our results. In w we discuss on the results obtained from the 

analytical expressions. Finally, in w we draw our conclusions. 

4.2 O b s e r v e d  features  at the  -1:0 n o d a l  

b e n d i n g  wave 

When a satellite orbits at the same rate as that of the nodal regression 

of the ring matter,  a nodal bending wave is formed with a one-armed 

spiral. In the case of Titan -1:0 resonance, the wave propagates out- 

ward. Its spiral pattern winds in the direction of the motion of the ring 

particles while the pattern rotates in the retrogate direction. Average 

optical depth variation at the location of this resonance clearly shows 



C H A P T E R  4. T H E  N U M E R I C A L  M O D E L I N G  65 

'W'  patterns which are easily interpreted as multiple passages of light 

through the ring bent out of the equatorial plane. The radio occul- 

tat ion data clearly allows identification of 28 oscillating waves. These 

waves start at the inaer vertical resonance (IVR) r~ = 77515 + 13km 

and dies out at around 77609km. Near r = r~, constant density (a) 

rings have wavelength [68], 

O" 

A(r) = 2 0 9 ~ ,  (4.1) 
r - -  r v 

where, a is the local surface mass density in the region of the resonance 

in units of g/crn 2 and r, r~ and A are in kilometers. An expression for 

the amplitude of the bending wave is given in [59], 

334 
IA.[ = - ~ m .  (4.2) 

However, fitting of the 'W' shaped features suggests [59] a = 4.5 

g /cm 2, but it requires an amplitude ten times larger than what Eq. 

4.2 would predict. The wavelength obtained for these parameters 

at r - r~ = 20km is about 47km. One could use a more realistic 

a = 0.45g/cm 2 which produces an amplitude of 500m. The wave- 

length obtained from this at a distance of 20km from the IVR be- 

comes around 4.7km Eq. 4.1, which is not observed. Further fits 

of varying wavelength suggest that the surface density varies from 

a = 0.86 :t= 0.05g/cm 2 near the IVR to a = 0.39 -4- 0.02 g/cm2159]. 

According to the standard model of the bending wave the amplitude 

of the wave should decay as [68], 

A(r)  = n.exp(-I(r rv)/AD[3), (4.3) 

where, AD is the damping length, 

(4.4) 

r dD r~ 
7 ) = (  ~ r  ) , (4.5) 

27rGa . 
e - ( ~ ) r ~ ,  (4.6) 

D = #2 _ (w - rn~) ~. (4.7) 
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Here, # is the vertical oscillation frequency, and v is the kinematic 

shear viscosity. From a linear theory of viscous damping, the viscosity 

in the region of - 1 : 0  resonance is given by [59], 

O" . 3 c ~ 2  

u = 4.76 x 105(~---DD ) s " (4.8) 

With a fitted u ,-, 0.4g/cm 2, and a damping length of ID >_ 50km, 

one gets an upper limit of u ,-~ 0.24 cm2/s. Using this, the ring scale 

height becomes less than 2.6 m [59]. 

These conclusions create more confusion than resolving the prob- 

lem. Naturally one would ask: (a) Is the amplitude of the wave 

around 1600m or 500m at the launching site? Is the surface den- 

sity cr = 0.45g/cm 2 or, a = 4.5g/cm2? Could the height of the ring 

be so small (h ,-, 2.6m)? While we are unable to answer much of 

these questions, we find that  the dynamics of particles is not simple 

inside the ring and assuming quite reasonable values of the amplitude 

1200m, and of the surface density 0.45g/cm 2, we find that the upper 

limit of the thickness of the ring is around 40m. We also notice that 

unlike the case of the A ring, matter  the population of the particles 

is denser nearer the edge of the ring. We also find that there is some 

shear in the vertical direction because of the variation of the radial 

velocity along the local vertical direction. 

4.3 N u m e r i c a l  S imulat ion  P rocedure  

In this work, we integrate three second order ordinary differential 

equations by the fourth order Runge-Kutta method. These equations 

represent the components of accelerations that are experienced by a 

particle located at x ,y , z  inside the ring in a Cartesian coordinate 

whose X-Y plane coincides with the average plane of the ring and 

Z axis lies along the local normal to the ring. They are given by 

Chakrabarti  [14], 

d2x 
= _2Ft dY + 3f~2x_ u 2 x , _  (f~2 (4.9) 

dt 2 dt 

d2 Y ~t d x 
dt 2 = 2 ~-[ - u2yl - (f~2 _w2)e2aycos ( r162  (4.10) 
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and 

where, 

d2 z 
= _ n 2 z  _ v2z ,  + (~2 _ w 2 ) c c o s ( r  (4.11) 

dt 2 

= [1 + dm2~in~(r 

Here, fl is the angular frequency at the location where damping is 

being calculated, w = (F/p - gt) where, gtp is the pattern frequency (in 

this case, equal to the frequency of Titan, with a minus sign.) r is the 

amplitude of the bending wave described by, 

z" = ~co~(m~x* + m~y* - o ~ t )  = ~ i n ( r  (4.12) 

Here, (x*, y*, z*) denote the co-coordinate on the midplane, m, and 

my denote the wave numbers of the wave along X- and Y- directions 

respectively: m 2 = rex2 + my.2 The distance of a particle at (x, y, z) 

from the origin on the midplane is, 

x l  = x - z *  = z l c m ~ s i n ( r  (4.13) 

yl = y - y* = Zlem~sin(r  (4.14) 

zl = z - z*. (4.15) 

If the local height of the ring is 2h, then one can imagine a box of 

size Xl,,,~x = 2hCmx, Yl , ,~  = 2he% and zl,m~ = 2h in which the 

particle moves around at each phase of the wave. We divide this box 

into 9 • 9 • 9 = 729 bins. We also divide phase r of the wave 

into nine bins. We then count the  number of times the particle visits 

each of these bins and obtain a population weighted average of the 

radial velocity components over xl and yl directions. Since v~ is the 

more dominant componefit, we concentrate on v~ and fit the values 

obtained in each bin as a function of Zl using fifth order polynomial. 

The shear is then  computed by differentiation of this fittcd curve for 

each wave phase. Finally, we average over all the phases and use the 

shear average for computing the damping length. 

The energy density of the wave is given by 

E~ = le~f~2. (4.16) 
2 
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The energy is transferred to neighboring particles through infrequent 

collisions (order of one per orbit). In the absence of a detailed model 

the coefficient of kinematic viscosity yk is approximated by Brahic[8], 

vk f i r  max(R 2, 2 = Repi). (4.17) 

where R is the size of the largest particle and R,pi is the amplitude of 

the epicyclic motion which is similar to half the thickness of the ring. 

Though T ~ 0, we estimate vk = g/~'h 2 from a general r for generality. 

The rate of dissipation of energy is, 

JEw = l/k(O < Vx > /G~Z1) 2 (4.18) 

The group velocity % is given by, 

7rGo 
% - ( 4 . 1 9 )  

w - mf~ 

Hence, an estimate of the damping length is obtained from, 

E 
AD = L,"~cg" (4.20) 

4.4 R e s u l t s  of  n u m e r i c a l  s i m u l a t i o n  

To simulate particle behavior near -1:0 resonance of Titan, We chose 

several sets of parameters. First we start with the following set: the 

location of the inner vertical resonance is rv = 77514.8km, the location 

where the damping length is to be calculated is r = 77542km. The 

surface mass density of the ring near the resonance a = 0.45g/cm 2. 

The half-height of the ring is h = 20m, the amplitude of the wave at 

t h e  resonance c = 1200m, the average wavelength of the wave in the 

X-direction at the launching site is ,~ = 2rc/n~ = 20km, the average 

wavelength in the Y-direction is ,~y = 27r/~y ,,~ rv. 

Figs. 4.1(a-c) show the results of the simulations. The solid curve 

is for phase r = 0, the dotted curve is for phase r = 7r/2, the dashed 

curve is for r = 7r and the dot-dashed curve is for r = 3rr/2 respec- 

tively. In (a), we plot the fitted curve of the average x-component 

of the velocity v, as a function of the local vertical height Zx. The 
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Figure 4.1: Variation of (a) x-component of velocity v,, 

(b) shear dv,/dzl and (c) population of matter  inside 

the bending wave of a C-ring near Titan -1:0 resonance. 

The solid, dotted, dashed and dot-dashed curves are 

drawn for the wave phases r = 0, ~r/2, 7r, 3~r/2 re- 

spectively. Note that  all of these quantities are large 

close to the upper and lower edges of the wave. For 

disk parameters, see text. 
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velocity is measured in units of 10-%m/s. In (b), the shear dv~/dzl is 

plotted against local height zl. In (c) the population is plotted. We 

note that towards the edge of the wave in the vertical direction, the 

population, velocity and shear all are very high. Particularly impor- 

tant is the fact that the population is not highest in the local midplane 

(zl = 0) in all the phases. This is to be contrasted with the situation 

near the Mimas 5:3 resonance of the A-ring. Given that the Saturn's 

gravity is more important in the C-ring than the A-ring, self-gravity 

effects are weaker here and this may have caused this modification of 

the population distribution. We verified that  the result is similar for 

other sets of disk parameters as well. 

In Fig. 4.2 we plot the damping length as calculated from Eq. 4.20 

as a function of the optical depth r of the bending wave. The solid 

curve is drawn for half-thickness h = 20m and the dotted curve and the 

dashed curve are drawn for h = 16m and h = 7.5m respectively. Other 

parameters have been kept fixed in the latter two cases of simulations. 

We note that for h = 20m only the damping length is around 70kin 

when the optical depth r = 0.45. For other disk heights the damping 

lengths are far too large. Hence our conclusion is that  the strict upper 

limit of the disk thickness is around 2h = 40m. 

4.5 Numerical modeling of analytical ex- 

pressions 

Earlier we had shown that the numerical simulation was used to in- 

tegrate the differential equations over the whole orbit. Here we solve 

the equation of motion analytically to get expressions for X, Y and Z 

coordinates for the dust particle like Eqs. 3.101, 3.102 and 3:103. Also 

we derive 4, ~) and ~? from those analytical expressions so that  those 

positions in the phase space may be properly binned to get the popu- 

lation in those bins or the number of particles visited those bins. The 

experiment was continued for a number of times for different values 

of half-height(h) and a. Also we used the normal formula to compute 
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the  wave amplitude (~) and components of wave vector (k,, k~). 

334 
c = v/a x lO0.dOcms (4.21) 

209 x a 
,k~ - ( r -  r , ) '  (4.22) 

Au = 2rrr., (4.23) 

2~r 
k~ = A---~" (4.24) 

2r  
ky = )---~-. (4.25) 

Here, r, r~ and A~,~ are in kilometers. It has been found out that the 

values of the amplitude c is observed to have very small order. So a 

special case has  also been studied iwhere the value of the amplitude is 

supplied from outside for the case of h = 750cm and a = 0.4 and the 

resul t ing shear is calculated. 

4.6 Results  for binning of analytical ex- 

pressions 

It has been found that shear obtained from the results of binning 

the output from the analytical results are almost 100 times smaller 

than that  numerical simulation. In this analytical study, we used 

the expression keeping only the hotness of the particles. Hence the 

binned results contained the hotness of the particle which shows that  

velocities and hence shear thus obtained are smaller with respected 

to those from the numerical results. This may be reflected from the 

tables given below. 

4.7 Concluding Remarks 

Study of particle dynamics inside the Saturn's ring shows a very com- 

plex behavior of matter.  We integrate numerically the trajectory of a 

particle inside the ring and study how it visits different 'bins' in the 

configuration space. We find that there is a considerable variation of 
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= 2.8338768600155213 x 10 4 

w = -2.8812219460613744 x 10 -4 

h G c. Shear 

500.0 0.4 52810.03692481194 

500.0 4.5 15744.91099442046 

750.0 0.4 52810.03692481194 

(*) 750.0 0.4 120000.00 

750.0 4.5 15744.91099442046 

4000.0 0.4 52810.03692481194 

6.0813370612990630 x i0 - r  

1.8835834639690321 x I0 - r  

3.9622382009817262 x 10 -7 

1.5556055237445819 x 10 -7 

1:1931588214367842 x 10 -7 

7.9709165468979398 x I0 -s  

Table 4.1: Results of the analytical expressions considering only the 

hotness of the particles. Here (*) denotes that the value of c was 

introduced by hand 

the velocity and population as a i function of the local vertical height. 

This naturally gives rise to a new source of shear and damping of the 

bending wave. 

It is observed that  complete dissipation of the bending wave at 

Ti tan -1:0 resonance takes place with 85km from the place of launch- 

ing. Such a rapid dissipation requires a strong source of dissipation. 

We show that  if the strongest component of shear is due to dv,/dzl, 

then the damping takes place within 70 - 80km provided the total 

disk height is ,,~ 40m. This has to be the strict upper limit of the ver- 

tical height, since additional normal shear should reduce the damping 

length to a even smaller value and thus bringing down AD correspond- 

ing to h = 16m or even h = 7.5m to the appropriate value which is 

observed. 

The collision rate in Saturn's ring is a large uncertain factor. Be- 

cause of the obvious nature of the vertical or horizontal oscillations, 

it is justified to assume that  collision rate is roughly twice per or- 

bit: However the normal shear in the Keplerian ring cannot be used 

without knowing the collision rates of the 'hot'  rings. Our result thus 

avoids this complexity by using only vertical shear and giving the 

strict upper limit of the vertical height. One problem which needs 

to be addressed is that  there are at least three parameters which are 

to be quantified very accurately: surface density a, amplitude of the 
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bending wave e and the vertical height h. Assuming a = 0.45g/cm 2 

and c = 1200m, which are very reasonable values we obtained these 

strict upper limit on h. In future, thorough study of the parameter 

space including the effect of the variation of the wavelength of the 

wave as a function of the distance from the launching site would be 

carried out. This would be reported by us in near future. Also from 

the binning of the analytical problem, it may be inferred that using 

the hotness is not the cause of smallness of the shear. The main forc- 

ing terms are basically sinusoidal and hence it may be argued that 

after a large number of tours in the orbit, these sinusoidal terms gets 

averaged out over the whole time period of the revolution. Hence after 

a large number of rotation, basically the effect of hotness prevails in 

the particle dynamics terms. So, analytical calculation using the hot- 

ness only may not be the fact of smallness. Rather, it may be argued 

that ,  binning may bring some error. Actually binning is done on the 

principle that  we want to see how many times the particle has visited 

a particular area in the phase -space. The dimension of that elemen- 

tary area becomes the size of the bin. This study, in a way, simulates 

the effect of population of particles at some particular region of finite 

dimension having some particular ranges of velocities. Hence as far as 

physics is concerned, this idea of calculation of Shear and population 

has nothing wrong in it. The error, however, may creep in due to fix- 

ing of the dimension of the bin as there is no fixed formula to specify 

the dimension of region in the phase - space. In Chapter 5 we have 

studied the analytical expressions for the locus of the particles and 

then we determined the velocities and then we determined the value 

of shear without any binning for a range of heights (h) and surface 

mass density (a). 
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A n a l y t i c a l  S t u d y  on T i t a n  

-1:0 r e s o n a n c e  I 

5.1 I n t r o d u c t i o n  

Voyager photopolarimeter experiment indicated that the thickness of 

the Saturn's ring is probably smaller than 200m at the outer edge 

of the A Ring [40]. When the oscillatory features in bending waves 

are identified with possible resonance events [68] and after a good fit 

of the ring profile the effective thickness is found, the thickness of 

the ring seems to be only a few tens of meters [12, 14, 59, 60]. One 

of the important new ingradient that has gone into measurement of 

thickness is a new source of shear which was found to be present during 

detailed numerical study of dynamics of particles inside the Saturn's 

ring [14]. This extra source of shear is found to effectively damp out 

the 5:3 bending wave within few tens of kilometers and since then is 

considered important [9, 53, 60] to describe particle dynamics inside 

a ring. 
In the present paper, we write down the equations governing the 

particle dynamics and show that under reasonable assumption, one 

can solve the equations analytically. We compute the shear also from 

analytical consideration and average over a complete oscillation' cycle 

to have an average shear. We then compute the damping length un- 

der various ring parameters (such as ring height and surface density) 

1communicated to Icarus 
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and show that the average shear could contribute to anomalously low 

damping length of the perturbations seen in Voyager data. 

In the next Section, we present the basic equations of motion and 

explain the genesis of each of the terms. In w we present the solutions 

of the equations and compute the average shear analytically. In w 

we apply our result in various ring conditions. Finally, in w we draw 

our conclusions. 

5.2 Model  Equations 

We choose the usual right handed Cartesian co-ordinate system 

(X, ]I, Z) at a radial distance r from the center of the planet with 

the origin located on the equatorial plane of the planet with X - Y 

plane coinciding with this plane. The X-axis points radially outward 

and Y-axis points toward the azimuthal direction. The frame is ro- 

tating around the planet with local Keplerian frequency ~(r).  Let 

the amplitude of the bending wave be e. With this amplitude the 

midplane itself oscillates up and down. Sitting on the midplane, the 

particle oscillates up and down with amplitude h, the half-thickness 

of the ring. Let the coordinate of the origin of a Cartesian frame 

(X', Y', Z') which is oscillating with the midplane of the disk be 

(x*, y*, z*). In the absence of oscillations of the midplane, these two 

co-ordinate systems merge..A particle moving within the ring having 

coordinate (x, y, z) has a coordinate of xa = x - x*, yl = y - y* and 
�9 i 

zl = z - z*. If w be the angular frequency of the propagating wave, 

then the phase of the midplane is r = k~x* + kyy* - w t  and that of 

the particle located a t  a point A (x, y, z) is r = k~x + k y y  - wt .  

By definition, w = (~)p - fl) where, ~p is the pattern frequency (in 

the present case, angular frequency of the perturbing moon, with an 

opposite sign). Here, k~ and k~ are the x -  and y -  components of the 

wave vector ft. Let (x', y', z') be the co-ordinate of the particle in the 

(X', Y', Z ' ) f rame.  Thus, 

z' = h + e cosr (5.1) 
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where, h is the half thickness of the ring. It is easy to show that the 

local normal at (x', y', z') on the midplane is given by, 

~.r k~sinr 
W 

where, W = (1 + dk2sinr 1/2. 

important relations, 

:c kysinr k 1 
3 W W '  (5.2) 

From this one derives the following 

Xl -"  zxc kxsinr (5.3) 

and 

yl = zl:e kusinr (5.4) 

If one ignores the oblateness of the planet, then the vertical fre- 

quency # of the particle defined by, 

- ( 5 . 5 )  
OZ 2 ' 

and the epicyclic frequency tr of the particle defined by, 

~2_ 1 d [(r2f~)2 ] (5.6) 
r 3 dr 

are identical to the local Keplerian frequency ~. 

In general, there will be three forcing terms, 

Y = ~P + YM + Y~,, (5.7) 

where, subscripts P, M and D denote the acceleration due to the 

planet, the moon and the self-gravity of the ring. For simplicity, one 

can assume that the vertical motion is due to the planet and the moon 

only, so that the vertical component of the equation of motion is given 

by, 
= - f l2z  + acos(kxx + k u y - w t ) .  (5.8) 

The solution of this is, 

a cos(kxx + k ~ y -  03t). (5.9) 
Z "-- - - h 2  __032 

This can be identified with the amplitude of the vertical movement of 

the midplane due to satellite forcing provided e(~/2 - 032) = a. Thus 

the forcing term due to the satellite is, 

y,, = c(a ~ - J )cos(k~x + kuy - 03t). (5.10) 
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Its components are to be added in the differential equation governing 

the motion of the particle. 

The components of the equation of motion of the test particle are 

given by [14], 

d2X 2 2 f l~t  ~-3~ '12x-V2Xl- ( f l2 -w2)e2n,cos(r162 , (5.11) 

= 2 a  dx  dt 2 dt - v2yl - (f12 _ w 2 ) e 2 ~ c o s ( r 1 6 2  (5.12) 

d2z 
_ f12 z _ v2zl § (~2 _w2)r  (5.13) 

dt 2 

Here, v 2 = 41rGp is the vertical oscillation frequency due to the self- 

gravity and p is the mass density of the ring matter. The first term 

of the R.H.S. of Eq. 5.11 comes from the well known Coriolis accel- 

eration. The second term of that equation comes from the difference 

between the centrifugal acceleration of the particle and the centrifu- 

gal acceleration of the observer in the rotating reference frame. We 

consider the case when ek << 1, i.e., for wavelengths which are large 

compared to the amplitude of the bending wave. In this limit, W ~ 1 

and r = r + z lek2sinr  * and cosr ~ cosr - ezlk2sin2r *. Using this, 

the z-component of the equation is re-written as, 

d~l 
dt 2 - a 2 z l -  e2(~/2 -w2)z lk2s in2r  *, (5.14) 

where, a 2 = ~2 + vs. It is easy to transform the equation in terms 

of the phase r by using O/Ot ~ -wO/Or and 02lOt 2 - w202/0r  .2. 

This yields, 

0r  "--'~=-w'--~O2zl Zl[a2  + r 2 w2)k2] + c2(fl2 -w2)zlk2c~162 2 (5.15) 

Close to the resonance orbit, fl ,.- w and the parameter, 

,y2__ ~2k2( f12 -w2) (5.16) 
u) 2 

could be treated as a perturbation parameter [14]. Defining, 

a2 ?2 
= + (5 .17)  
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The Eq. 5.15 becomes, 

02zl 72cos2r * 
0 r  .2 -- --?]2Z' "]- 2 Zl" (5.18) 

To obtain a complete solution, we expand zl in powers of .),2 as, 

N 

z, = z7 ) + E  (5.19) 
i=O 

Upon substitution in Eq. 5.18 andiequating coefficients of the powers 
of 1,2 we obtain, up to powers of 1,4, the solution of z as, 

z - ccosr + hsinr/r h1,2 [ sin(-2+-~)r - sin(2 - r/)r 

16 L l + r /  l - r ]  

+hi, 4 [ sin(4+_~)__r sinr/r sin_(4- _~)__r ] 
t8(1 + r/)(2 + y) - (1 + r/)(1 - 77) - 8(1 - r/)(2 - ~)j 

(5.20) 

From Eqs. 5.11-5.12, we can now obtain the solutions for x, 

v2ek:~h [1 + 1,2/(16(1-r/)) 
x = hsin(f lr  ~ h~/w2---~:--- ~ cos(1-r/)r  

1 + 1,2/(16(1 + ~?)) cos(1 + r/)r 
g~2/w2 _ (1 + r/) 2 

1,2/!  6 + 1 ,4 / (512(2  - r/)! cos(3 - r/)r 

1,2/16 + 1,4/(512(2 + r/)) cos(3 + r])r 

-~ 1,'/(512(1 -7/)(2 - r/)) Cost5 

1,'/(512(1 + 7/)(2 + 77)) cos(5 + r/)r 
[a2/~2 _ (5 + r/)21 

(5.21) 

5 . 3  C o m p u t a t i o n  o f  t h e  S h e a r  c o m p o -  

n e n t s  

Numerical simulations [12, 14] tend to indicate that the shear due 
to variation of radial velocity component along vertical direction is 
significant. 
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Analytically this shear could be computed from < $ > / < ~ > : 

< ~ > P 
-- (5.22) < k >  Q' 

where~ 

P 

and, 

_ -  

a2 _ (i (I -- r/) 2 + ~2 _ (1 "4- r/) 2 2 ~ - 

(-r l  sin 2~'T/) { 1 + '72/16(1 - ,7)(1 - ,7) 2 -  
2~'(1 + ~])(1 -- 7]) q- a2 _ (I r]) 2 -~ 

1 +--.0,2_/16(2 q- r/)(1 -4- r/) 2 } (-- sin 21rr/) 
- (i + 77) 2 2r(1 + 77)(I - 7]) 

{  j/_16 
+ (i- ~){5~"- (3- ~)} ~)2 

~=/16+~/512(2 +~) ~3+ I (-~sin2~) 

{'72/16 + '74/512(2 - 7) 
+ ( 1 - r / ) [ - - ~ - - ( 3 - r / )  ] (3-r/12 

. . . . .  ~ . . . .  

_'72/16 + ,74/512(2 + r/) (3 + r/) 2"~ ( -  sin 2~'r/) 
(1 + , 7 ) [ ~  - ( 3  + r/)2] J 2~'(3 + ,7)(3 - ,1) 

-,7 sin 2~'~/ +'74/512(la__~ _ (5- ,7)(2_ ~)~- ,7) (5 _ ,7)2 2~ ' (5u  ~ - ~  = ,~) 
t~2 

2,~(5 + ~)(5 - ,1) ' 

(1 + •)2} 

(5.23) 

Q -hw - -  sin 2~'r/ 
2~" 

s 2,,(1 - ,7~) (4  - , 1  ~) + - ~ 
-h74w [ (,72 + 8) sin 2rrr] 

64 [s(1 - ,?)(4 - ,7~)(16 - ,?) 
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r/2(r/2 - I0)sin 2zrr/ 
87r(1 - Tfl)(4 -- ~72)(16 -- 72) 

(5.24) 

In above equations averaging is done over a complete cycle r 

During excursion of the particle in epicyclic orbits inside the ring, 

it collides with a neighboring particle once in each orbit and in this 

process momentum is transferred. The mean distance between two 

colliding particles is either the epicyclic radius or the size of the par- 

ticle, whichever is bigger. 

This analytical model may be used for calculation of the damping 

length of the bending wave in the planetary rings. To calculate the 

damping length, the energy density of the wave is first calculated using 

1 2-2 E~, = ~e ~l (5.25) 

and then the dissipation of the wave is calculated as, 

Ozl ' (5.26) 

where, the kinematic viscosity Uk is given by, 

u~ = a r  max  (R ~, R~,,). (5.27) 

Here, R is the size of the largest particle and Repi is the amplitude of 

the epicyclic motion which is similar to half the thickness of the ring 

(5.28) 

(5.29) 

i.e., h. The group velocity is given by, 

7rGG 
% =  

a)  - -  m ~ ~ "  

The damping length is estimated from, 

"~D = j~wCg �9 

5 .4  R e s u l t s  for v a r i o u s  r i n g  c o n d i t i o n s  

In this Section, we report some results of our calculation for rings 

of different characteristics considering Titan -1:0 resonance. The 

parameters we considered were the ring height h and the surface 
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mass density a. Here, in Fig. 5.1, we plot curves of surface 

mass density cr vs damping length /~D for half-thicknesses h = 

lOOcms, 150cms, 200cms, 250cms. This figure illustartes the general 

analytical behaviour of the damping length varying with surface mass 

density. The figure also shows, in general, that  there is a minima 

near a ,,~ 0.2gm/cm 2 to 0.5gm/cm 2. The observed damping length 

,-~ 85km is also shown which indicates that  there is no analytical solu- 

tion for higher value of surface mass density to have damping length 

of the wave ,,~ 85km. In the Fig, 5.2, we illustrate the zoomed nature 

of Fig. 5.1. The y- axis of the Fig. 5.2 has been taken in logarithmic 

form. It also illustrates the damping length of 85 x 105cms line parallel 

to x- axis intersecting the curves for different half-thickness h at lower 

values of surface density. This indicates the surface density of the C- 

ring may be around 0.22gm/cm 2 to 0.3gm/cm 2. The damping length 

is higher near a ,,, O.14gm/cm 2. Preliminary results are reported in 

[4]. 

From the Figures it is clear that  a cannot be as large as 4.5 gm/cm 2 

as reported in Rosen et al, [59] if the half height of the ring is ,-~ 

1 - 2.5m or so. From our analysis it is apparent that  the total ring 

height for the C ring may be around 1 -2 .5m in order that  the damping 

length agrees with the observed value of ,-, 85km or so [59]. 

5.5 Conc lus ion  

Rosen et al. [59] inferred from their numerical modeling that  the 

persistence of the wave for over 28 cycles indicated that  the scale 

height of the C ring could not be more than 2 to 3 m. Even the radio 

occultation fitting indicated it would be rather < 2.6m for damping 

length of the order of ,,~ 85km. Our analytical calculations show a 

good agreement with the observed results. We therefore believe that  

the new component of shear which was first introduced by [14] for 

Mimas 3:2 resonance, could be operating in Titan -1:0 resonance as 

well. 
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Chapter 6 

Conclusion 

The spiral bending wave as observed in the planetary rings, especially 

for the case Saturn's ring provide an interesting method of probing 

the ring system to understand the dynamics of a particle in the plane- 

tary ring. Usually the bending wave is observed for particles of larger 

dimensions. Hence the study of effect of Lorentz force on the par- 

tides showing the bending wave is not viable. Therefore, it is only 

important to consider the effect of satellite forcing and the effect of 

self gravity with the planetary attraction and other collisional terms 

may be important to study the bending wave. 

The effect of inter-particle collision may give rise to effect of viscos- 

ity leading to damping of the wave. However, both in our analytical 

and numerical study, we neglected the effect of inter-particle collision. 

We simply considered the effect of planetary attraction which was bal- 

anced by the effect of centrifugal f0rce due to rotation of dust around 

the planet in the ring, the effect of satellite forcing and the effect of 

self gravity due to the whole disk itself. The result was amazing. In 

absence of any collisional terms, the result would show that the wave 

would last for atleast few cycles of rotation around the planet. How- 

ever, the result showed that there exists some other kind of viscous 

shear in the particle model which forces the bending wave to damp 

after a few kilometers. The kinematic viscosity due to this type of 

damping was a measurable quantity. The effect of shear was strong 

enough to damp the bending wave at a distance which clearly matches 

with the observed data. This signifies that probably the effect of col- 
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lisional damping is weaker than the shear developed in our case. 

The numerical simulation andl the analytical work suggest that 

the damping length of the bending wave excited at the Titan -1:0 

resonance of the C-ring would be around 85kms as observed by the 

Voyager provided the surface mass density is around a ,,~ 0.2gm/cm 2 

to 0.3grn/crns 2 and the ring thickness is around 2 - 5m. 
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